OPEN-ACCESS PEER-REVIEWED

1Dr. Puneet Sudan, 2Dr. Gajanand Modi, 3Marina Albuquerque, 4Abanibhusan Jena, 5Angsuman Das

1*Professor, Chandigarh Pharmacy College-Jhanjeri, Chandigarh Group of Colleges-Jhanjeri, Mohali (Punjab), India.

2Associate Professor, FOBAS RNB Global University, Bikaner, India.

3Research Scholar, School of Biological Sciences and Biotechnology, Goa University. Taleigao Goa, India.

4Associate Professor, Fakir Mohan Medical College, Fakir Mohan University, O.U.H.S, Odisha, India.

5Rajiv Gandhi University

Download PDF

Abstract

Mass spectrometry (MS) has revolutionized therapeutic drug monitoring (TDM) and analysis in clinical toxicology. This review studies the recent advancements and applications of MS in toxicological investigations, highlighting its role in improving TDM precision and expanding the analyte detection scope.MS’s versatility allows for precise drug quantification across various concentrations, enhancing patient care through personalized dosing regimens and monitoring drug efficacy and toxicity. MS-based assays provide superior specificity and sensitivity compared to traditional immunoassays, especially in complex matrices like blood, urine, and tissue samples. MS aids in identifying and quantifying novel psychoactive substances and designer drugs, addressing emerging challenges in clinical toxicology. The rapid adaptation of this substance to changing drug landscapes is a crucial aspect of its essential role in forensic and emergency toxicology. MS, alongside TDM, is increasingly being utilized in postmortem toxicology, aiding in thorough investigations into drug-related deaths, and contributing to forensic pathology and public health initiatives. Despite its widespread adoption, challenges such as standardization of methodologies, complex data interpretation, and cost-effectiveness persist. The integration of MS into clinical practice and its potential in toxicological investigations will be significantly enhanced by addressing these challenges. MS is crucial in postmortem toxicology, aiding in forensic pathology and public health interventions, but challenges like standardization, data interpretation, and cost remain. MS’s application in toxicology is continuously evolving, providing exceptional capabilities in TDM, new psychoactive substances (NPS)detection, and forensic investigations. Future technological advancements are expected to enhance the clinical utility of MS, leading to improved patient outcomes and public health.MS continues to revolutionize clinical toxicology, offering exceptional capabilities in TDM, NPS detection, and forensic analyses, with continued advancements promising improved patient care and public health outcomes.

Keywords: Mass Spectrometry, Toxicological investigations, Therapeutic drug monitoring, Drug discovery, Insilico-methodologies

References

[1]. Adaway, J. E., Keevil, B. G., & Owen, L. J. (2015). Liquid chromatography-t&em mass spectrometry in the clinical laboratory. Annals of clinical biochemistry, 52(1), 18-38.
[2]. Allen, D. R., & McWhinney, B. C. (2019). Quadrupole time-of-flight mass spectrometry: A paradigm shift in toxicology screening applications. The Clinical Biochemist Reviews, 40(3), 135.
[3]. Alffenaar, J. W., van Hateren, K., & Touw, D. J. (2018). Determination of Flucytosine in Human Serum using Liquid Chromato graphy-T&em Mass Spectrometry. Journal of Applied Bioanalysis, 4(5), 157–165. https://doi.org/10.17145/jab.18.020
[4]. Ates, H. C., Roberts, J. A., Lipman, J., Cass, A. E., Urban, G. A., & Dincer, C. (2020). On-site therapeutic drug monitoring. Trends in biotechnology, 38(11), 1262-1277.
[5]. Azad, A. K., Praveen, M., & Sulaiman, W. M. A. B. W. (2024). Assessment of Anticancer Properties of Plumbago zeylanica. Harnessing Medicinal Plants in Cancer Prevention & Treatment, 91–121. https://doi.org/10.4018/979-8-3693-1646-7.ch004
[6]. Beck, O. (2014). Exhaled breath for drugs of abuse testing—evaluation in criminal justice settings. Science & Justice, 54(1), 57-60.
[7]. Becker, J. O., & Hoofnagle, A. N. (2012). Replacing immunoassays with tryptic digestion-peptide immunoaffinity enrichment & LC–MS/ MS. Bioanalysis, 4(3), 281-290.
[8]. Berm, E. J., et al. (2016). A clinical validation study for application of DBS in therapeutic drug monitoring of antidepressants. Bioanalysis, 8(5), 413-424.
[9]. Borowitz, S. (1995). A monthly review for health care professionals of the children’s medical center: therapeutic drug monitoring in pediatric patients. Pediatr Pharmacother, 1, 1-10.
[10]. Buko, A. (2017). Capillary electrophoresis mass spectrometry based metabolomics. Journal of Applied Bioanalysis, 3(1), 5–20.
[11]. Capiau, S., Veenhof, H., Koster, R. A., Bergqvist, Y., Boettcher, M., Halmingh, O., Keevil, B. G., Koch, B. C. P., Linden, R., Pistos, C., Stolk, L. M., Touw, D. J., Stove, C. P., & Alffenaar, J. C. (2019). Official International Association for Therapeutic Drug Monitoring & Clinical Toxicology Guideline: Development & Validation of Dried Blood Spot-Based Methods for Therapeutic Drug Monitoring. Therapeutic drug monitoring, 41(4), 409–430.
[12]. https://doi.org/10.1097/FTD.0000000000000643
[13]. Cappelle, D., Neels, H., Yegles, M., Paulus, J., van Nuijs, A. L., Covaci, A., & Crunelle, C. L. (2015). Gas chromatographic determination of ethyl glucuronide in hair: comparison between t&em mass spectrometry & single quadrupole mass spectrometry. Forensic science internation nal, 249, 20–24.
[14]. https://doi.org/10.1016/j.forsciint.2014.11.022.
[15]. Carlier, M., Carrette, S., Klugkist, S., Verstraete, A., & Stove, C. P. (2015). Assays for therapeutic drug monitoring of β-lactam antibiotics: A structured review. International journal of antimicrobial agents, 46(4), 367-375.
[16]. Chauhan, A., Goyal, M. K., & Chauhan, P. (2014). GC-MS technique & its analytical applications in science & technology. J. Anal. Bioanal. Tech, 5(6), 222.
[17]. Chen, Y., Xie, Y., Li, L., Wang, Z., & Yang, L. (2023). Advances in mass spectrometry imaging for toxicological analysis & safety evaluation of pharmaceuticals. Mass Spectrometry Reviews, 42(5), 2207-2233.
[18]. Cheze, M., Lenoan, A., Deveaux, M., & Pépin, G. (2008). Determination of ibogaine & noribogaine in biological fluids & hair by LC–MS/MS after Tabernanthe iboga abuse: Iboga alkaloids distribution in a drowning death case. Forensic Science International, 176(1), 58-66.
[19]. Cuypers, E., Flinders, B., Boone, C. M., Bosman, I. J., Lusthof, K. J., Van Asten, A. C., Tytgat, J., & Heeren, R. M. (2016). Consequences of Decontamination Procedures in Forensic Hair Analysis Using Metal-Assisted Secondary Ion Mass Spectrometry Analysis. Analytical chemistry, 88(6), 3091–3097. https://doi.org/10.1021/acs.analchem.5b03979
[20]. DelGuidice, C. E., Ismaiel, O. A., Mylott Jr, W. R., & Halquist, M. S. (2020, January 15). Quantitative Bioanalysis of Intact Large Molecules using Mass Spectrometry. Journal of Applied Bioanalysis, 6(1), 52–64.
[21]. Dingle, T. C., & Butler-Wu, S. M. (2013). MALDI-TOF mass spectrometry for microorganism identification. Clinics in laboratory medicine, 33(3), 589-609.
[22]. Domin, M., & Cody, R. (2014). Ambient ionization mass spectrometry. Royal Society of Chemistry.
[23]. Enderle, Y., Foerster, K., & Burhenne, J. (2016). Clinical feasibility of dried blood spots: analytics, validation, & applications. Journal of Pharmaceutical & Biomedical Analysis, 130, 231-243.
[24]. Freudenberger, K., Hilbig, U., & Gauglitz, G. (2016). Recent advances in therapeutic drug monitoring of immunosuppressive drugs. TrAC Trends in Analytical Chemistry, 79, 257-268.
[25]. Gahlaut, A., Dhull, V., Dahiya, M., & Dabur, R. (2014). Mass Spectroscopy: Investigative Tool in Forensic Toxicology. Drug Invention Today, 6(1).
[26]. Garg, U., & Zhang, Y. V. (2016). Mass spectrometry in clinical laboratory: applications in therapeutic drug monitoring & toxicology. In Clinical Applications of Mass Spectrometry in Drug Analysis: Methods & Protocols (pp. 1-10).
[27]. Goullé, J.-P., Saussereau, E., Mahieu, L., & Guerbet, M. (2014). Current role of ICP–MS in clinical toxicology & forensic toxicology: A metallic profile. Bioanalysis, 6(17), 2245-2259.
[28]. Grayson, M. A. (2011). John Bennett Fenn: a curious road to the prize. Journal of The American Society for Mass Spectrometry, 22(8), 1301-1308.
[29]. Gwak, S., & Almirall, J. R. (2015). Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) & direct analysis in real time (DART) coupled to quadrupole time‐of‐flight mass spectrometry (QTOF‐MS). Drug Testing & Analysis, 7(10), 884-893.
[30]. Habala, L., Valentová, J., Pechová, I., Fuknová, M., & Devínsky, F. (2016). DART–LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids. Legal Medicine, 20, 27-31.
[31]. Hern&ez, F., Sancho, J. V., Ibáñez, M., Abad, E., Portolés, T., & Mattioli, L. (2012). Current use of high-resolution mass spectrometry in the environmental sciences. Analytical & bioanalytical chemistry, 403, 1251-1264.
[32]. Holsapple, M. P., & Wallace, K. B. (2008). Dose response considerations in risk assessment—an overview of recent ILSI activities. Toxicology Letters, 180(2), 85-92.
[33]. Holstege, C. P., & Borek, H. A. (2012). Toxidromes. Critical Care Clinics, 28(4), 479-498.
[34]. Hoogt&ers, K., et al. (2007). Therapeutic drug monitoring of tacrolimus with the dried blood spot method. Journal of pharmaceutical & biomedical analysis, 44(3), 658-664.
[35]. Jackson, A. U., et al. (2010). Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst, 135(5), 927-933.
[36]. Jager, N. G., Rosing, H., Schellens, J. H., & Beijnen, J. H. (2014). Procedures & practices for the validation of bioanalytical methods using dried blood spots: a review. Bioanalysis, 6(18), 2481-2514.
[37]. Jagerdeo, E., Clark, J. A., Leibowitz, J. N., & Reda, L. J. (2015). Rapid analysis of forensic samples using an atmospheric solid analysis probe interfaced to a linear ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 29(2), 205-212.
[38]. Jannetto, P. J., & Fitzgerald, R. L. (2016). Effective use of mass spectrometry in the clinical laboratory. Clinical chemistry, 62(1), 92-98.
[39]. Jiwan, J.-L. H., Wallemacq, P., & Hérent, M.-F. (2011). HPLC-high resolution mass spectrometry in clinical laboratory? Clinical biochemistry, 44(1), 136-147.
[40]. Kang, J.-S., & Lee, M.-H. (2009). Overview of therapeutic drug monitoring. The Korean journal of internal medicine, 24(1), 1.
[41]. Kaufmann, A. (2012). The current role of high-resolution mass spectrometry in food analysis. Analytical & bioanalytical chemistry, 403(5), 1233-1249.
[42]. Kauppila, T. J., Flink, A., Haapala, M., Laakkonen, U. M., Aalberg, L., Ketola, R. A., & Kostiainen, R. (2011). Desorption atmospheric pressure photoionization-mass spectrometry in routine analysis of confiscated drugs. Forensic science international, 210(1-3), 206–212. https://doi.org/10.1016/j.forsciint.2011.03.018
[43]. Kerian, K. S., Jarmusch, A. K., & Cooks, R. G. (2014). Touch spray mass spectrometry for in situ analysis of complex samples. Analyst, 139(11), 2714-2720.
[44]. Kloosterboer, S. M., de Winter, B. C. M., Bahmany, S., Al-Hassany, L., Dekker, A., Dieleman, G. C., van Gelder, T., Dierckx, B., & Koch, B. C. P. (2018). Dried Blood Spot Analysis for Therapeutic Drug Monitoring of Antipsychotics: Drawbacks of Its Clinical Application. Therapeutic drug monitoring, 40(3), 344–350. https://doi.org/10.1097/FTD.0000000000000502
[45]. Langman, L. J., & Kapur, B. M. (2006). Toxicology: Then & now. Clinical Biochemistry, 39(5), 498-510.
[46]. Lee, H.-H., Lee, J.-F., Lin, S.-Y., & Chen, B.-H. (2016). Simultaneous identification of abused drugs, benzodiazepines, & new psychoactive substances in urine by liquid chromatography t&em mass spectrometry. The Kaohsiung Journal of Medical Sciences, 32(3), 118-127.
[47]. Lee, M. S., & Kerns, E. H. (1999). LC/MS applications in drug development. Mass spectrometry reviews, 18(3-4), 187-279.
[48]. Lynch, K. L., Breaud, A. R., V&enberghe, H., Wu, A. H., & Clarke, W. (2010). Performance evaluation of three liquid chromatography mass spectrometry methods for broad-spectrum drug screening. Clinica Chimica Acta, 411(19-20), 1474-1481.
[49]. Ma, S., & Chowdhury, S. K. (2013). Data acquisition & data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis, 5(10), 1285-1297.
[50]. Maurer, H., & Meyer, M. R. (2016). High-resolution mass spectrometry in toxicology: current status & future perspectives. Archives of toxicology, 90(11), 2161-2172.
[51]. McKeating, K. S., Aubé, A., & Masson, J.-F. (2016). Biosensors & nanobiosensors for therapeutic drug & response monitoring. Analyst, 141(2), 429-449.
[52]. Meneghello, A., Tartaggia, S., Alvau, M. D., Polo, F., & Toffoli, G. (2018). Biosensing technologies for therapeutic drug monitoring. Current medicinal chemistry, 25(34), 4354-4377.
[53]. Mogollón, N. G. S., Quiroz-Moreno, C. D., Prata, P. S., de Almeida, J. R., Cevallos, A. S., Torres-Guiérrez, R., & Augusto, F. (2018). New Advances in Toxicological Forensic Analysis Using Mass Spectrometry Techniques. Journal of analytical methods in chemistry, 2018, 4142527. https://doi.org/10.1155/2018/4142527.
[54]. Moore, C., Marinetti, L., Coulter, C., & Crompton, K. (2008). Analysis of pain management drugs, specifically fentanyl, in hair: Application to forensic specimens. Forensic Science International, 176(1), 47-50.
[55]. Moorthy, G. S., Stricker, P. A., & Zuppa, A. F. (2015). A simple & selective liquid chromatography-t&em mass spectrometry method for determination of ε-aminocaproic acid in human plasma. Journal of Applied Bioanalysis, 1(3), 99–107. https://doi.org/10.17145/jab.15.016
[56]. Nguyen, S., & Fenn, J. B. (2007). Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences, 104(4), 1111-1117.
[57]. Ojanperä, I., Kolmonen, M., & Pel&er, A. (2012). Current use of high-resolution mass spectrometry in drug screening relevant to clinical & forensic toxicology & doping control. Analytical & bioanalytical chemistry, 403(5), 1203-1220.
[58]. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current biology, 3(6), 327-332.
[59]. Pirro, V., Jarmusch, A. K., Vincenti, M., & Cooks, R. G. (2015). Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Analytica Chimica Acta, 861, 47-54.
[60]. Praveen, M. Multi-epitope-based vaccine designing against Junín virus glycoprotein: immunoinformatics approach. Futur J Pharm Sci 10, 29 (2024). https://doi.org/10.1186/s43094-024-00602-8
[61]. Praveen M. Characterizing the West Nile Virus’s polyprotein from nucleotide sequence to protein structure – Computational tools. J Taibah Univ Med Sci. 2024 Jan 16;19(2):338-350. doi: 10.1016/j.jtumed.2024.01.001. PMID: 38304694; PMCID: PMC10831166.
[62]. Praveen M, Ullah I, Buendia R, Khan IA, Sayed MG, Kabir R, Bhat MA, Yaseen M. Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, & MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals (Basel). 2024 Jan 19;17(1):134. doi: 10.3390/ph17010134. PMID: 38276007; PMCID: PMC10819299.
[63]. Praveen, M., Morales-Bayuelo, A. (2023) Drug Designing against VP4, VP7 & NSP4 of Rotavirus Proteins – Insilico studies, Mor. J. Chem., 14(6), 729-741.
[64]. Robb, D. B., Covey, T. R., & Bruins, A. P. (2000). Atmospheric pressure photoionization: an ionization method for liquid chromatography− mass spectrometry. Analytical chemistry, 72(15), 3653-3659.
[65]. Seger, C., Beattie, I., Shing, B., & Ferrero, S. (2016). Assuring the proper analytical performance of measurement procedures for immunosuppressive drug concentrations in clinical practice: Recommendations of the International Association of Therapeutic Drug Monitoring & Clinical Toxicology Immunosuppressive Drug Scientific Committee. Therapeutic Drug Monitoring, 38(2), 170-189.
[66]. Seyfinejad, B., & Jouyban, A. (2021). Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical & clinical practices. Journal of Pharmaceutical & Biomedical Analysis, 205, 114315.
[67]. Shafiee, A., Ghadiri, E., Kassis, J., & Atala, A. (2019). Nanosensors for therapeutic drug monitoring: Implications for transplantation. Nanomedicine, 14(20), 2735-2747.
[68]. Shannon, M., Cox, M. N., & Baum, C. R. (1998). Toxicology reviews: Immunoassay in detecting drugs of abuse. Pediatric Emergency Care, 14(5), 372-375.
[69]. Smith, M. L., Vorce, S. P., Holler, J. M., Shimomura, E., Magluilo, J., Jacobs, A. J., & Huestis, M. A. (2007). Modern instrumental methods in forensic toxicology. Journal of analytical toxicology, 31(5), 237–9A. https://doi.org/10.1093/jat/31.5.237.
[70]. Suni, N. M., Lindfors, P., Laine, O., Ostman, P., Ojanperä, I., Kotiaho, T., Kauppila, T. J., & Kostiainen, R. (2011). Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) & desorption electrospray ionization-mass spectrometry (DESI-MS). Analytica chimica acta, 699(1), 73–80.
[71]. https://doi.org/10.1016/j.aca.2011.05.004
[72]. Tamara, S., den Boer, M. A., & Heck, A. J. (2021). High-resolution native mass spectrometry. Chemical Reviews, 122(8), 7269-7326.
[73]. Thomson, A. (2004). Why do therapeutic drug monitoring. Pharm j, 273(7310), 153-5.
[74]. Thunig, J., Flø, L., Pedersen‐Bjergaard, S., Hansen, S. H., & Janfelt, C. (2012). Liquid‐phase microextraction & desorption electrospray ionization mass spectrometry for identification & quantification of basic drugs in human urine. Rapid Communications in Mass Spectrometry, 26(2), 133-140.
[75]. Timmerman, P., et al. (2011). EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis, 3(14), 1567-1575.
[76]. Veenhof, H., Koster, R. A., Alffenaar, J. C., Berger, S. P., Bakker, S. J. L., & Touw, D. J. (2017). Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, & Creatinine in Dried Blood Spots in Kidney Transplant Patients. Transplantation, 101 (7), 1727–1733.
[77]. https://doi.org/10.1097/TP.0000000000001591.
[78]. Viette, V., Hochstrasser, D., & Fathi, M. (2012). LC-MS (/MS) in clinical toxicology screening methods. Chimia, 66(5), 339-339.
[79]. Wang, H., Liu, J., Cooks, R. G., & Ouyang, Z. (2010). Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew&te Chemie, 122(5), 889-892.
[80]. Wang, H., Liu, J., Cooks, R. G., & Ouyang, Z. (2010). Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew&te Chemie, 122(5), 889-892.
[81]. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G., & Ifa, D. R. (2013). Mass spectrometry imaging under ambient conditions. Mass spectrometry reviews, 32(3), 218–243.
[82]. https://doi.org/10.1002/mas.21360.
[83]. Wu, J., Hughes, C. S., Picard, P., Letarte, S., Gaudreault, M., Lévesque, J. F., Nicoll-Griffith, D. A., & Bateman, K. P. (2007). High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-t&em mass spectrometry. Analytical chemistry, 79(12), 4657–4665. https://doi.org/10.1021/ac070221o.
[84]. Wu, Y.-H., Lin, K.-l., Chen, S.-C., & Chang, Y.-Z. (2008). Integration of GC/EI-MS & GC/NCI-MS for simultaneous quantitative determination of opiates, amphetamines, MDMA, ketamine, & metabolites in human hair. Journal of Chromatography B, 870(2), 192-202.
[85]. Xian, F., Hendrickson, C. L., & Marshall, A. G. (2012). High resolution mass spectrometry. Analytical chemistry, 84(2), 708-719.
[86]. Yuan, C., Chen, D., & Wang, S. (2015). Drug confirmation by mass spectrometry: Identification criteria & complicating factors. Clinica Chimica Acta, 438, 119-125
[87]. Zakaria, R., Allen, K. J., Koplin, J. J., Roche, P., & Greaves, R. F. (2016). Advantages & challenges of dried blood spot analysis by mass spectrometry across the total testing process. Ejifcc, 27(4), 288.
[88]. Zhang, Z., Bast, R. C., Jr, Yu, Y., Li, J., Sokoll, L. J., Rai, A. J., Rosenzweig, J. M., Cameron, B., Wang, Y. Y., Meng, X. Y., Berchuck, A., Van Haaften-Day, C., Hacker, N. F., de Bruijn, H. W., van der Zee, A. G., Jacobs, I. J., Fung, E. T., & Chan, D. W. (2004). Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer research, 64(16), 5882–5890. https://doi.org/10.1158/0008-5472.CAN-04-0746
[89]. Zhu, M., Zhang, H., & Humphreys, W. G. (2011). Drug metabolite profiling & identification by high-resolution mass spectrometry. Journal of Biological Chemistry, 286(29), 25419-25425.
[90]. Zwart, T. C., Gokoel, S. R. M., van der Boog, P. J. M., de Fijter, J. W., Kweekel, D. M., Swen, J. J., Guchelaar, H. J., & Moes, D. J. A. R. (2018). Therapeutic drug monitoring of tacrolimus & mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device. British journal of clinical pharmacology, 84(12), 2889–2902. https://doi.org/10.1111/bcp.13755.