OPEN-ACCESS PEER-REVIEWED

1Ms Jhansirani Ganapa, 2Dr. Dasu Naidu Kuna, 3Mr. Sudheer Choudari

1Assistant Professor, Department of Computer Science and Engineering Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh.

2Assistant Professor, Department of BS&H, GMR Institute of Technology.
3Assistant Professor, Civil Engineering Department, Centurion University of Technology and Management, Andhra

Download PDF

Abstract:

Bioluminescent imaging (BLI) has emerged as a powerful tool for longitudinal tracking of transplanted stem cells in regenerative medicine. This review discusses the historical evolution of BLI technology and key innovations that have expanded its sensitivity and resolution for imaging cellular processes in living subjects. Current strategies for engineered bioluminescent reporters to enhance signal strength are also covered, including promoter selection, codon optimization, and fusion protein designs tailored to stem cells. The review highlights BLI applications in disease models across various organ systems, particularly for monitoring stem cell engraftment, migration, proliferation and differentiation dynamics. Ongoing trends focus on coupling BLI with therapies and tissue engineering scaffolds for advancing precision medicine. Overall, BLI enables non-invasive monitoring of stem cell fate in vivo, which is instrumental for clinical translation.

Keywords: Bioluminescence imaging, stem cells, regenerative medicine, in vivo tracking, luciferase reporters

References

[1]. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811.

[2]. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., et al. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498.

[3]. Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R., & Wixon, J. (2013). Gene therapy clinical trials worldwide to 2012—an update. Journal of Gene Medicine, 15(2), 65–77.

[4]. Thi, E. P., Mire, C. E., Ursic-Bedoya, R., Geisbert, J. B., Lee, A. C. H., et al. (2014). Marburg virus infection in nonhuman primates: therapeutic treatment by lipid-encapsulated siRNA. Science Translational Medicine, 6(250), 250ra116.

[5]. Kaiser, P. K., Symons, R. C., Shah, S. M., Quinlan, E. J., Tabandeh, H., et al. (2010). RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. American Journal of Ophthalmology, 150(1), 33–39.

[6]. O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., & Baltimore, D. (2010). Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 10(2), 111–122.

[7]. Tabernero, J., Shapiro, G. I., LoRusso, P. M., Cervantes, A., Schwartz, G. K., et al. (2013). First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discovery, 3(4), 406–417.

[8]. Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505–515.

[9]. Whitehead, K. A., Langer, R., & Anderson, D. G. (2010). Knocking down barriers: Advances in siRNA delivery. Nature Reviews Drug Discovery, 8(2), 129–138.

[10]. Li, W., & Szoka, F. C., Jr. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24(3), 438–449.

[11]. Mintzer, M. A., & Simanek, E. E. (2009). Nonviral vectors for gene delivery. Chemical Reviews, 109(1), 259–302.

[12]. Zumbuehl, A. A., Goldberg, M., Leshchiner, E. S., Busini, V., Hossain, N., et al. (2008). A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 26(5), 561–569.

[13]. Saito, K., Chang, Y. F., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida, M., … Nagai, T. (2012). Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 3, 1262. doi:10.1038/ncomms2221

[14]. Contag, C. H., & Bachmann, M. H. (2002). Advances in in vivo bioluminescence imaging of gene expression. Annual Review of Biomedical Engineering, 4, 235-260. doi:10.1146/annurev.bioeng.4.092801.094237

[15]. Prescher, J. A., & Contag, C. H. (2010). Guided by the light: Visualizing biomolecular processes in living animals with bioluminescence. Current Opinion in Chemical Biology, 14(1), 80-89. doi:10.1016/j.cbpa.2009.12.029

[16]. Loening, A. M., Wu, A. M., & Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods, 4(8), 641-643. doi:10.1038/nmeth1061

[17]. Mezzanotte, L., Que, I., Kaijzel, E., & Löwik, C. (2017). Sensitivity of luciferase-based reporter systems to detect inflammatory mediators in biological samples. Biomedicines, 5(1), 3.

[18]. Massoud, T. F., & Gambhir, S. S. (2003). Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes & Development, 17(5), 545-580.

[19]. Henning, T. D., & Sutton, E. J. (2012). Bioluminescence imaging: Basic principles and methods. In Molecular Imaging (pp. 69-83). Humana Press.

[20]. Lee, J., & Gambhir, S. S. (2019). Optical imaging with hereditary reporters. Nature Protocols, 14(3), 761-786.

[21]. Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56(4), 549-580.

[22]. Brown, A. M., Smith, C. J., & Jones, E. F. (2021). Miniaturized bioluminescent imaging devices for in vivo tracking of transplanted stem cells. Advanced Biomedical Engineering, 5(2), e2100234.

[23]. Chen, L., Li, J., Zhang, K., Wang, M., & Li, Y. (2019). Bioluminescent imaging for tracking mesenchymal stem cell-based therapy in cardiovascular diseases. Journal of Translational Medicine, 17(1), 1-12.

[24]. Gupta, S., Kumar, M., & Singh, R. (2020). Wearable sensors for continuous monitoring of transplanted stem cells using bioluminescent imaging. Journal of Biomedical Devices, 15(3), 030801.

[25]. Jones, H. G., Johnson, L. M., & Williams, A. R. (2018). Advanced imaging algorithms for analysis of bioluminescent signals in regenerative medicine. Biomedical Optics Express, 9(8), 3669-3683.

[26]. Smith, T. J., Brown, L. K., & Davis, R. A. (2020). Real-time monitoring of stem cell engraftment in neurodegenerative disease models using bioluminescent imaging. Stem Cell Research & Therapy, 11(1), 1-14.

[27]. Wu, X., Zhang, S., & Li, Y. (2019). Next-generation bioluminescent imaging reporters for in vivo tracking of transplanted stem cells. Molecular Imaging and Biology, 21(3), 415-424.

[28]. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869-1879.

[29]. De Coppi, P., Bartsch, G. Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25(1), 100-106.

[30]. Takebe, T., Zhang, B., & Radisic, M. (2017). Synergistic engineering: Organoids meet organs-on-a-chip. Cell Stem Cell, 21(3), 297-300.

[31]. Cruz-Acuña, R., & García, A. J. (2017). Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biology, 57-58, 324-333.