OPEN-ACCESS PEER-REVIEWED

1Prof Dr Johnson Raja James, 2Dr. Rasheed Abdulsalam Al-Maqtari, 3Dr Shalini Kapoor

1Research Scholar, Lincoln University, Malaysia College and university name

2Faculty of Dentistry, DEAN, Lincoln University College, Malaysia

3Professor, Department of Periodontology, Faculty of Dental Sciences, Sgt University, Haryana

Download PDF

Abstract

This research article presents the development and validation of a novel analytical method for assessing the long-term degradation and stability of dental implant materials. The method integrates spectroscopic techniques with advanced computational modeling to detect subtle molecular changes associated with material degradation over time. Through a series of experiments and analyses, we demonstrate the efficacy and reliability of the method in identifying degradation mechanisms and predicting implant performance. Comparative analysis with existing techniques validates the method’s accuracy and sensitivity. The significance of this research lies in its contribution to advancing our understanding of dental implant materials and improving patient outcomes in implant dentistry. Future research directions include exploring the effects of environmental factors on implant degradation and investigating novel surface treatments to enhance implant stability.

Keywords: Dental implants, degradation, stability, analytical method, spectroscopy, computational modelling, material science

References

[1]. Park, J. B., Lakes, R. S. (2016). Biomaterials: An Introduction. Springer.

[2]. Zhang, Y., & Lawn, B. R. (2012). Long-term strength of zirconia: the effect of grain size and surface processing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(5), 1412-1420.

[3]. Barão, V. A., Mathew, M. T., Assunção, W. G., Yuan, J. C., Wimmer, M. A., & Sukotjo, C. (2012). Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH – an electrochemical study. Clinical Oral Implants Research, 23(9), 1055-1062.

[4]. Smeets, R., Henningsen, A., Heuberger, R., & Schwarz, F. (2014). A novel non-contact cleaning approach for contaminated implant surfaces and its biocompatibility. Clinical Oral Implants Research, 25(3), 292-296.

[5]. Anselme, K., & Bigerelle, M. (2014). Statistical analysis of the surface topography of the titanium dental implant. Microscopy and Microanalysis, 20(S3), 1608-1609.

[6]. Misch CE. Contemporary implant dentistry. Elsevier Health Sciences; 2007.

[7]. Att W, et al. Methods for the evaluation of long-term osseointegration of dental implants. Materials 2019;12(4):653.

[8]. Smeets R, et al. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head & Face Medicine 2014;10(1):34.

[9]. Albrektsson T, et al. Osseointegration: a reality. Periodontology 2000 2000;17(1):22-35.

[10]. Gaviria L, et al. Dental implant surface technology and osteoblast differentiation. Journal of Dental Research 2014;93(11):1119-1126.

[11]. Meredith, N. (1998). Assessment of implant stability as a prognostic determinant. The International Journal of Prosthodontics, 11(5), 491-501.

[12]. Meredith, N., Alleyne, D., & Cawley, P. (1996). Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clinical Oral Implants Research, 7(3), 261-267.

[13]. Boronat López, A., Balaguer Martínez, J., & Carrillo García, C. (2012). Influence of bone density, implant dimensions and insertion technique on implant stability and bone microstrain: a preliminary in vitro study. The International Journal of Oral & Maxillofacial Implants, 27(3), 614-623.

[14]. Vasak, C., Watzak, G., Gahleitner, A., Strbac, G. D., Schemper, M., & Zechner, W. (2014). Computed tomography-based evaluation of template (NobelGuide™)-guided implant positions: a prospective radiological study. Clinical Oral Implants Research, 25(9), 1058-1063.

[15]. Nedir, R., Bischof, M., Szmukler-Moncler, S., Bernard, J. P., & Samson, J. (2013). Predicting osseointegration by means of implant primary stability. Clinical Oral Implants Research, 24(4), 378-385.

[16]. Sanz, M., Alcoforado, G., & Carrion, P. (2015). Long-term treatment outcomes in edentulous patients with implant overdentures: the influence of implant location and bone quality. Clinical Oral Implants Research, 26(1), e46-e53.

[17]. Chrcanovic, B. R., Albrektsson, T., & Wennerberg, A. (2014). Reasons for failures of oral implants. Journal of Oral Rehabilitation, 41(6), 443-476.

[18]. Derks, J., Schaller, D., Håkansson, J., Wennström, J. L., Tomasi, C., & Berglundh, T. (2015). Peri-implantitis—onset and pattern of progression. Journal of Clinical Periodontology, 42(9), 810-818.

[19]. Albrektsson, T., Chrcanovic, B., & Wennerberg, A. (2019). The turning point in osseointegration research. Journal of Oral Rehabilitation, 46(9), 827-829.

[20]. Albrektsson, T., & Wennerberg, A. (2004). Oral implant surfaces: Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International Journal of Prosthodontics, 17(5), 536-543.

[21]. Branemark, P. I., Adell, R., Breine, U., Hansson, B. O., Lindstrom, J., & Ohlsson, A. (1969). Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scandinavian journal of plastic and reconstructive surgery, 3(2), 81-100.

[22]. Branemark, P. I., Zarb, G. A., & Albrektsson, T. (1985). Tissue‐integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Company.

[23]. Anusavice, K. J., Shen, C., & Rawls, H. R. (2012). Phillip’s science of dental materials. Elsevier Health Sciences.

[24]. Scarano, A., Piattelli, M., Caputi, S., Favero, G. A., & Piattelli, A. (2010). Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. Journal of periodontology, 81(2), 192-196.

[25]. Att, W., Hori, N., Takeuchi, M., Ouyang, J., Yang, Y., & Anpo, M. (2009). Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials, 30(29), 5352-5363.

[26]. Depprich, R., Zipprich, H., Ommerborn, M., Mahn, E., Lammers, L., & Handschel, J. (2008). Osseointegration of zirconia implants compared with titanium: an in vivo study. Head & face medicine, 4(1), 1-7.

[27]. Gomes, P. S., Fernandes, M. H., & Martins, M. C. (2017). Polyetherether ketone (PEEK) in medical and dental fields: a review. Journal of Materials Science, 52(24), 13793-13811.

[28]. Hossain, N., Mobarak, M. H., Islam, M. A., Hossain, A., Al Mahmud, M. Z., Rayhan, M. T., & Chowdhury, M. A. (2023). Recent development of dental implant materials, synthesis process, and failure – A review. Results in Chemistry, 6, 101136. https://doi.org/10.1016/j.rechem.2023.101136