Pharmacokinetics of Niclosamide in Rat Plasma by RP HPLC via Intranasal and Intraperitoneal Route of Administration
Main Article Content
Abstract
Background: Niclosamide (NIC) has been proposed as an interesting molecule for repurposing for antiviral activity. This study examined the comparative pharmacokinetic study of niclosamide by intranasal and intraperitoneal route in male Sprague-Dawley rats.
Material & Methods: The bioanalytical method was developed on Reverse Phase High Performance Liquid Chromatography (RP-HPLC) for estimation of niclosamide in the presence of ibuprofen as an internal standard. An isocratic elution of mobile phase of 20 mM phosphate buffer; pH 4.5: methanol (15: 85 % v/v) was maintained at flow rate of 1.1 mL/min and effluent was monitored by Photo Diode Array (PDA) detector at 254 nm.
Results: After a single 20 mg/kg intraperitoneal dose, the maximum concentration (Cmax) of niclosamide was found to be 9031±0.003 ng /ml, maximum time to reach peack concentration (tmax) was 2 hr and half-life (t1/2) of was found to be 0.55845±0.001 hours, whereas after intranasal administration the Cmax of niclosamide was found to be 6109±0.0026 ng /ml, t max was 5 hr and half-life (t1/2) was found to be 1.617186±0.0017 hr. The plasma peak concentration of niclosamide after two hours was 6.8 μg after 2 hr of intranasal administration and gradually decrease with time, whereas there were no significant concentration of NIC detected in lungs by intraperitoneal administration. Two-fold increase in area under curve (AUCO-t) and Mean residence time (MRT) with diminished clearance after administration of niclosamide via intranasal route in lungs.
Conclusion: Relatively higher concentration of niclosamide was estimated in lungs via intranasal while in plasma via intraperitoneal route of administration in rats. It is imperative to elucidate the pharmacokinetic characteristics of niclosamide in human subjects prior to its prospective application in individuals afflicted with SARS-CoV.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All articles published in JAB are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.
References
World health organization. World Health Organization model list of essential medicines: 21st list 2019. World Health Organization; 2019.
Pawlowski Z, Allan J, Sarti E. Control of Taenia solium taeniasis / cysticercosis: from research towards implementation. Int J Parasitol. 2005;35(11-12):1221-32. doi: 10.1016/j.ijpara.2005.07.015, PMID 16143335.
Arshad U, et al. Prioritisation of potential anti-SARS-CoV-2 drug repurposing opportunities based on ability to achieve adequate target site concentrations derived from their established human pharmacokinetics. medRxiv, 2020.
Van Tonder E, Devilliers M, Simple HJ. robust and accurate high-performance liquid chomatography method for the analysis of several anthelmintics in veterinary formulations. J Chomatogr. A. 1996;729:267-72.
Cholifah S, Kartinasari WF, Indrayanto G. Simultaneous HPLC determination of levamisole Hcl and anhydrous NIC in veterinary powders, and its validation. J Liq Chromatogr Relat Technol. 2007;31(2):281-91.
San-xia L, Bo J, Jun-wei W. HPLC method for content determination of compound NIC tablet. J Pharm Anal. 2013;33(2):317-21.
Onur F, Tekin N. Spectrophotometric determination of niclosamide and thiabendazole in tablets. Anal Lett. 1994;27(12):2291-301. doi: 10.1080/0003271 9408005983.
Daabees HG. Selective differential spectrophotometric methods for determination of niclosamide and drotaverine hydrochloride. Anal Lett. 2000;33(4):639-56. doi: 10.1080/00032710008543080.
Algarra M, Campos B, Rodriguez B, Jose E, Sanchez F. Niclosamide quantifification in methyl-β-cyclodextrin after derivatization to aminoniclosamide. J Inclus Phenom Macrocycl Chem. 2012;72(1):89-94.
Schreier TM, Dawson VK, Choi Y, Spanjers NJ, Boogaard MA. Determination of niclosamide residues in rain bow trout (Oncorhynchus mykiss and channel catfifish (Ictalurus punctatus) fillet tissue by high-performance liquid chromatography. J Agric Food Chem. 2000;48(6):2212-5. doi: 10.1021/jf990695r, PMID 10888524.
Caldow M, Sharman M, Kelly M, Day J, Hird S, Tarbin JA. Multi-residue determination of phenolic and salicylanilide anthelmintics and related compounds in bovine kidney by liquid chromatographytandem mass spectrometry. J Chromatogr A. 2009;1216(46):8200-5. doi: 10.1016/j.chroma.2009.04.008, PMID 19426989.
Churchill FC, Ku DN. Extractive alkylation of 20, 5-dichloro 40 nitro salicylanilide (niclosamide) for gasliquid chromatographic analysis. J Chromatogr. 1980;189(3):375-88. doi: 10.1016/s0021-9673(00)80317-9, PMID 7380938.
John SJ, Geoffrey BP. Estimation of residues of the molluscicide, niclosamide, in bananas by gasliquid chromatography of the heptaflfluorobutyryl derivative of the substituted aniline moiety. Pestic Sci. 1980;10(6):531-9.
Alemu H, Khoabane NM, Tseki PF. Electrochemical oxidation of niclosamide at a glassy carbon electrode and its determination by voltammetry. Bull Chem Soc Ethiop. 2003;17(1):95-106.
Abreu FC, Goulart MO, Brett AM. Detection of the damage caused to DNA by niclosamide using an electrochemical DNA-biosensor. Biosens Bioelectron. 2002;17(11-12):913-9. doi: 10.1016/s0956-5663(02)00082-9, PMID 12392939.
Ivan, S., Vesna, N., Ivana, S., Ljubisa, N., Mihajlo, S., 2013. Development and validation of a new RP-HPLC method for determination of quercetin in green tea. J. Anal. Chem. 68 (10), 906911.
Purvin S, Vuddanda PR, Singh SK, Jain A, Singh S. Pharmacokinetic and tissue distribution study of solid lipid nanoparticles of zidovudine in rats. J Nanotechnol. 2014;2014:1-7. doi: 10.1155/2014/854018.
Bansal SK, Laylof T, Bush ED, Hamilton M, Hankinson EA, Landy JS, et al. Qualifcation of analytical instruments for use in the pharmaceutical industry: a scientific approach. AAPS PharmSciTech. 2004;5(1):1-8.
Xu S, Yu J, Zhan J, Yang L, Guo L, Xu Y. Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. BioMed Res Int. 2017;2017:4684962. doi: 10.1155/2017 /4684962, PMID 29259982.
Saras-Nacenta M, López-Púa Y, Lípez-Cortés LF, Mallolas J, Gatell JM, Carné X. Determination of efavirenz in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl. 2001;763(1-2):53-9. doi: 10.1016/s0378-4347(01)00357-7, PMID 1171 0583.
Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102. doi: 10.1016/j.ijpharm.2 005.10.010, PMID 16303268.
Smith KM, Corporation W, Xu Y. Tissue sample preparation in bioanalytical assays. Bioanalysis. 2012;4(6):741-9. doi: 10.4155/bio.12.19, PMID 22452264.
Usami YU, Oki TO, Nakai MN, Sagisaka MS, Kaneda TK. A simple HPLC method for simultaneous determination of lopinavir, ritonavir and efavirenz. Chem Pharm Bull. 2003;51(6):715-8. doi: 10.1248/cpb.51.715.
Dolan JW. System suitability. LC Troubl. 2004;17(6):328-32.
Khan W, Sharma SS, Kumar N. Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Anal. 2013;5(6):453-60. doi: 10.1002/dta.339, PMID 22447374.
Bhinge SD, Malipatil SM, Sonawane LV. Bioanalytical method development and validation for simultaneous estimation of cefxime and dicloxacillin by RP-HPLC in human plasma. Acta Chim Slov. 2014;61(3):580-6. PMID 25286213.
Jagadeeswaran M, Gopal N, Pavan K, Siva T. Quantitative estimation of lopinavir and ritonavir in tablets by RP-HPLC method. Pharm Anal Acta. 2012;3(5):3-5.
Kiran BV, Rao BS, Dubey SS. Development and validation of a reversed-phase HPLC method for the determination of efavirenz in pharmaceutical dosage forms by internal standard method. J Pharm Res. 2012;5(1):94-9.
Nathi R, Rao SS, Sahoo S, Sunkara N, Mohan VR. Stability indicating rp-hplc method development and validation of efavirenz in bulk and pharmaceutical dosage form. Int J Pharm Biol Sci. 2017;7(2):223-9.
Kumar G, Sharma S, Shafiq N, Pandhi P, Khuller GK, Malhotra S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011;18(1):65-73.
doi: 10.3109/10717544.2010.509367, PMID 20735202.
Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, et al. Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother. 2013;57(7):3110-20. doi: 10.1128/AAC.00267-13, PMID 23612193.
Lee SG, Lee J, Kim KM, Lee KI, Bae YS, Lee HJ. Pharmacokinetic study of NADPH oxidase inhibitor Ewha-18278, a pyrazole derivative. Pharmaceutics. 2019;11(9):2-8. doi: 10.3390/pharmaceutics11090482, PMID 31533299.
Kushwaha HN, Mohan NK, Sharma AK, Singh SK. Pharmacokinetic study and bioavailability of a novel synthetic trioxane antimalarial compound 97/63 in rats. Malar Res Treat. 2014;2014:759392. doi: 10.1155/2014/759392, PMID 25302132.
Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS PharmSciTech. 2017;18(8):3151-62. doi: 10.1208/s12249-017-0790-5, PMID 28534300.
Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1(2):87-93. doi: 10.4103/0976-500X.72350, PMID 21350616.
Kumar P, Lakshmi YS, Kondapi AK. An oral formulation of efavirenz-loaded lactoferrin nanoparticles with improved biodistribution and pharmacokinetic profle. HIV Med. 2017;18(7):452-62. doi: 10.1111/hiv.12475, PMID 28000390.
Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. BioMed Res Int. 2014;2014:363404. doi: 10.1155/2014/363404, PMID 24967360.
Huang J, Gautam N, Bathena SPR, Roy U, McMillan JE, Gendelman HE, et al. UPLC-MS/MS quantifcation of nanoformulated ritonavir, indinavir, atazanavir, and efavirenz in mouse serum and tissues. J Chromatogr B. 2011;879(23):2332-8. doi:10.1016/j.jchromb.2011.06.032.
Savic IM, Nikolic VD, Savic IM, Nikolic LB, Stankovic MZ. Development and validation of a new RP-HPLC method for determination of quercetin in green tea. J Anal Chem. 2013;68(10):906-11. doi: 10.1134/S1061934813100080.