Impact On Bioavailability Of Apis In Drug-Drug Co-Crystallization: A Review
Main Article Content
Abstract
The pharmaceutical industries are observing a developing crisis in the procedure of drug development due to the failure of some successful drug candidates exhibiting poor aqueous solubility. The oral absorption of drugs with high permeability but low solubility (class II of the Biopharmaceutics classification system, BCS) is limited due to their poor solubility. Pharmaceutical scientists constantly seek to optimization of physical properties of active pharmaceutical ingredients (APIs) such as bioavailability, solubility, hygroscopicity, melting point, stability. Though numerous approaches like formation of salts, solvates, polymorph etc., are being used to improve performance characteristics of API, but these existing strategies are found to have limited success. In addition to these available strategies, bioavailability of drugs can be improved by formation of co-crystal. It is as an alternative approach based on crystal engineering to enhance physicochemical properties of drug. Co-crystals are crystalline structure composed of at least two components, where the components may be atoms, molecules or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. The components interact via non-covalent interaction such as hydrogen bonding, van der Waals interaction. The present paper would highlight effect of drug-drug co-crystallization on the bioavailability of drug molecule.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All articles published in JAB are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.
References
Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Advanced drug delivery reviews. 2017 Aug 1;117:3-24.
Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug discovery today. 2008 May 1;13(9-10):440-6.
Pekamwar SS, Gadade DD, Kale GK. Co-crystalization: technique for improvement of pharmaceutical properties. Indian Drugs. 2016 Sep;53(09):09.
Kumar S. Pharmaceutical cocrystals: an overview. Indian Journal of Pharmaceutical Sciences. 2018 Jan 15;79(6):858-71.
Roy R, Dastidar P. Supramolecular Synthon Approach in Developing Anti‐Inflammatory Topical Gels for In Vivo Self‐Delivery. Chemistry–A European Journal. 2017 Nov 7;23(62):15623-7
McClements DJ, Li F, Xiao H. The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Annual review of food science and technology. 2015 Apr 10;6: 299-327.
Serajuddin AT. Salt formation to improve drug solubility. Advanced drug delivery reviews. 2007 Jul 30;59(7):603-16.
Sikarra D, Shukla V, Kharia AA, Chatterjee DP. Techniques for solubility enhancement of poorly soluble drugs: an overview. JMPAS. 2012;1:1-22.
Da Costa MA, Seiceira RC, Rodrigues CR, Hoffmeister CR, Cabral LM, Rocha HV. Efavirenz dissolution enhancement I: co-micronization. Pharmaceutics. 2012 Dec 20;5(1):1-22.
Alshora DH, Ibrahim MA, Alanazi FK. Nanotechnology from particle size reduction to enhancing aqueous solubility. In Surface chemistry of nanobiomaterials 2016 Jan 1 (pp. 163-191). William Andrew Publishing.
Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. Journal of agricultural and food chemistry. 2014 Feb 26; 62(8):1852-9.
Rathi R, Kaur S, Singh I. A review on co-crystals of Herbal Bioactives for solubility enhancement: preparation methods and characterization techniques. Crystal Growth & Design. 2022 Feb 22;22(3):2023-42.
Rathi R, Singh I. Multicomponent crystal compromising dasatinib and selected co-crystals formers: a patent evaluation of EP2861589B1. Pharmaceutical Patent Analyst. 2022 Jan;11(1):15-21.
Zhou Q, Shen Y, Li Y, Xu L, Cai Y, Deng X. Terahertz spectroscopic characterizations and DFT calculations of carbamazepine cocrystals with nicotinamide, saccharin and fumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020 Aug 5;236:118346.
Drozd KV, Manin AN, Churakov AV, Perlovich GL. Novel drug–drug cocrystals of carbamazepine with para-aminosalicylic acid: screening, crystal structures and comparative study of carbamazepine cocrystal formation thermodynamics. CrystEngComm. 2017; 19(30):4273-86.
Bevill MJ, Seadeek CS, Albert EV, Vlahova PI, Ely RJ, Andres P, inventors; AMRI SSCI LLC, assignee. Methods of making cocrystals. United States patent US 9,120,766. 2015 Sep 1.
Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angewandte Chemie International Edition in English. 1995 Nov 17; 34(21):2311-27.
Sun G, Jin Y, Li S, Yang Z, Shi B, Chang C, Abramov YA. Virtual coformer screening by crystal structure predictions: crucial role of crystallinity in pharmaceutical cocrystallization. The Journal of Physical Chemistry Letters. 2020 Sep 24; 11(20):8832-8.Fabian, L.; Cambridge structure database analysis of molecular complementary in co-crystals; Cryst. Growth Des., 2009, 9, 3.
Fabian L. Cambridge structure database analysis of molecular complementary in co-crystals; Cryst. Growth Des 2009; 9(3):1436–1443
Aitipamula S, Chow PS, Tan RB. Structural, spectroscopic and thermal analysis of cocrystals of carbamazepine and piracetam with hydroquinone. Journal of Chemical Crystallography. 2011 Nov; 41:1604-11.
Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. International journal of pharmaceutics. 2011 Apr 4;407(1-2):63-71.
Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry. 1995 Feb; 99(7):2224-35.
Shakeel M, Mahmood K. Solution and aggregation properties of chlorpheniramine maleate in aqueous solution and its interaction with sodium dodecyl sulphate (SDS) and amino acids. Journal of Molecular Liquids. 2020 Oct 1;315:113781.
Thorat YS, Gomati ID, Hosmani AH. Solubility enhancement techniques: a review on conventional and novel approaches. International journal of pharmaceutical sciences and research. 2011 Oct 1;2(10):2501.
Vimalson DC. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian Journal of Pharmaceutics (AJP). 2016 Jun 27;10(2).
Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discovery Today. 2019 Mar 1; 24(3):796-804.
Corpinot MK, Bucar DK. A practical guide to the design of molecular crystals. Crystal Growth & Design. 2018 Dec 6;19(2):1426-53.
Sarma M, Chatterjee T, Das SK. Ammonium–crown ether based host–guest systems: N–H⋯ O hydrogen bond directed guest inclusion featuring N–H donor functionalities in angular geometry. RSC advances. 2012;2(9):3920-6.
Aitipamula S, Das S. Cocrystal formulations: A case study of topical formulations consisting of ferulic acid cocrystals. European Journal of Pharmaceutics and Biopharmaceutics. 2020 Apr 1;149,95-104.
Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharmaceutical research. 2008 Mar,25: 530-41.
Delori A, Friščić T, Jones W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm. 2012; 14(7):2350-62.
Mark D. Eddleston, Nadeesh Madusanka, William Jones. Cocrystal Dissociation in the Presence of Water: A General Approach for Identifying Stable Cocrystal Forms. Journal of Pharmaceutical Sciences Volume 103, Issue 9 p. 2865-2870. https://doi.org/10.1002/jps.24003
Friščić T, Childs SL, Rizvi SA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009; 11(3):418-26.
Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angewandte Chemie. 2005;117(5):734-8
Boldyreva E. Mechanochemistry of inorganic and organic systems: what is similar, what is different Chemical Society Reviews. 2013; 42(18):7719-38.
Hasa D, Carlino E, Jones W. Polymer-assisted grinding, a versatile method for polymorph control of cocrystallization. Crystal Growth & Design. 2016 Mar 2; 16(3):1772-9.
Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016 Feb;17: 20-42.
Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: feasibility studies and physicochemical characterization. Molecular pharmaceutics. 2016 Sep 6;13(9):3054-68.
Shah FU, Khan IA, Johansson P. Comparing the thermal and electrochemical stabilities of two structurally similar ionic liquids. Molecules. 2020 May 21;25(10):2388.
Alhalaweh A, Alzghoul A, Mahlin D, Bergström CA. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. International journal of pharmaceutics. 2015 Nov 10;495(1):312-7.
Yu Q, Dang L, Black S, Wei H. Crystallization of the polymorphs of succinic acid via sublimation at different temperatures in the presence or absence of water and isopropanol vapour. Journal of Crystal Growth. 2012 Feb 1;340(1):209-15.
Park B, Yoon W, Yun J, Ban E, Yun H, Kim A. Emodin-nicotinamide (1: 2) cocrystal identified by thermal screening to improve emodin solubility. International journal of pharmaceutics. 2019 Feb 25; 557: 26-35.
Desiraju GR. Crystal engineering: A brief overview. Journal of chemical sciences. 2010 Sep;122:667-75.
Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN, Pratiwi YS, Arifin H. Cocrystal of ibuprofen–nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Scientia pharmaceutica. 2018;86(2):23.
George CP, Thorat SH, Shaligram PS, Suresha PR, Gonnade RG. Drug–drug cocrystals of anticancer drugs erlotinib–furosemide and gefitinib–mefenamic acid for alternative multi-drug treatment. Cryst Eng Comm. 2020; 22(37):6137-51.
Nechipadappu SK, Tekuri V, Trivedi DR. Pharmaceutical co-crystal of flufenamic acid: synthesis and characterization of two novel drug-drug co-crystal. Journal of Pharmaceutical Sciences. 2017 May 1;106(5):1384-90.
Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Advanced pharmaceutical bulletin. 2017 Sep; 7(3):399.
Eesam S, Bhandaru JS, Naliganti C, Bobbala RK, Akkinepally RR. Solubility enhancement of carvedilol using drug–drug cocrystallization with hydrochlorothiazide. Future Journal of Pharmaceutical Sciences. 2020 Dec;6(1):1-3.
Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN, Pratiwi YS, Arifin H. Cocrystal of ibuprofen–nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Scientia pharmaceutica. 2018;86(2):23.
Drozd KV, Manin AN, Churakov AV, Perlovich GL. Novel drug–drug cocrystals of carbamazepine with para-aminosalicylic acid: screening, crystal structures and comparative study of carbamazepine cocrystal formation thermodynamics. Cryst Eng Comm. 2017;19(30):4273-86.
Surov AO, Voronin AP, Manin AN, Manin NG, Kuzmina LG, Churakov AV, Perlovich GL. Pharmaceutical cocrystals of diflunisal and diclofenac with theophylline. Molecular pharmaceutics. 2014 Oct 6;11(10):3707-15.
Budiman A, Megantara S, Saraswati P. Synthesize Glibenclamide-Ascorbic Acid Cocrystal Using Solvent Evaporation Method to Increase Solubility and Dissolution Rate of Glibenclamide. Research Journal of Pharmacy and Technology. 2019;12(12):5805-10.
Darwish S, Zeglinski J, Krishna GR, Shaikh R, Khraisheh M, Walker GM, Croker DM. A new 1: 1 drug-drug cocrystal of theophylline and aspirin: discovery, characterization, and construction of ternary phase diagrams. Crystal Growth & Design. 2018 Nov 13;18(12):7526-32.