OPEN-ACCESS PEER-REVIEWED

1Dr. Ruchita Shrivastava, 2Dr. Gajanand Modi, 3Partha Sarathi Satpathy, 4Dr. Sukanta Bandyopadhyay, 5Yogesh Kumar, 6Isha Yadav

1Former Lecturer, (Horticulture, Adhoc), Department of Botany, Govt. Homescience PG Lead College, Narmadapuram(MP), India.

2Associate Professor, FOBAS RNB Global University, Bikaner, India

3Assistant professor, School of Pharmacy, Driems University, Tangi, Cuttack, India.

4Associate Professor, Dept of Biochemistry, Rama Medical College Hospital & Research Centre, Mandhana, Kanpur (U.P) – 20921, India

5Department of Pharmacy, Jagannath University, Jaipur, India

6Masters in Zoology (Specialisation in Entomology), DSB Campus, Kumaun University, Nainital, Uttarakhand- 263002, India.

Download PDF

Abstract

Plants and other organisms serve as sources of secondary metabolites that can be used as leads in the drug development industry. Increasing health issues such as antibiotic resistance and cancer require new drug development methods. Natural products offer a rich source of structurally complex molecules that have been selected to have an impact on multiple biological systems. Biotechnologies such as synthetic biology, computation, and high throughput screening are improving the discovery and characterization of natural product-based drug leads. However, there are difficulties in ensuring a continuous supply of these valuable natural products. The discovery of new drugs using plant-derived chemicals is a huge area but prospects can be enhanced through cross-cutting collaborations among research areas such as ethnobotany, chemistry and pharmacology. Sustainable therapeutics discovery for natural product-based medicines: integrated data-driven and traditional knowledge-based strategies for natural products discovery. In conclusion, natural products remain crucial in ensuring success in the future of providing medicine for increasing pressing healthcare needs.

Keywords: Natural products, Drug discovery, biologically active, compounds, Healthcare challenges, Synthetic biology, Interdisciplinary collaborations

References

[1]. Abdel-Razek, A. S., Hamed, A. & Frese, M., 2018. Penicisteroid C: New polyoxygenated steroid produced by co-culturing of Streptomyces piomogenus with Aspergillus niger. Steroids, 138, 21-25.

[2]. Allard, P.-M., Bisson, J., Azzollini, A., Pauli, G. F., Cordell, G. A. & Wolfender, J.-L. 2018. Pharmacognosy in the digital era: shifting to contextualized metabolomics. Current Opinion in Biotechnology, 54, 57-64.

[3]. Ardalani, H., Avan, A. & Ghayour-Mobarhan, M. 2017. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna Journal of Phytomedicine, 7(4), 285.

[4]. Amaral, M., Hölper, S., Lange, C., Jung, J., Sjuts, H., Weil, S., Fischer, M., Radoevic, K., & Rao, E. (2020). Engineered Technologies and Bioanalysis of multispecific Antibody Formats. Journal of Applied Bioanalysis, 6(1), 26–51.

[5]. Atanasov, A. G., Waltenberger, B. & Pferschy-Wenzig, E. M., 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582-1614.

[6]. Azad, A.K., Praveen, M. & Sulaiman, 2024. Assessment of Anticancer Properties of Plumbago zeylanica. Harnessing Medicinal Plants in Cancer Prevention and Treatment, 91–121. https://doi.org/10.4018/979-8-3693-1646-7.ch004

[7]. Baker, D. D., Chu, M., Oza, U. & Rajgarhia, V. 2007. The value of natural products to future pharmaceutical discovery. Natural product reports, 24(6), 1225-1244.

[8]. Baranczak, A., Tu, N. P., Marjanovic, J., Searle, P. A., Vasudevan, A. & Djuric, S. W. 2017. Integrated platform for expedited synthesis–purification–testing of small molecule libraries. ACS Medicinal Chemistry Letters, 8(4), 461-465.

[9]. Basu, S., Ellinger, B. & Rizzo, S., (2011). Biology-oriented synthesis of a natural-product inspired oxepane collection yields a small-molecule activator of the Wnt-pathway. Proceedings of the National Academy of Sciences, 108(17), 6805-6810.

[10]. Bauer, R. A., Wurst, J. M. & Tan, D. S. 2010. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Current Opinion in Chemical Biology, 14(3), 308-314.

[11]. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. & Prinsep, M. R. 2017. Marine natural products. Natural Product Reports, 34(3), 235-294.

[12]. Bon, R. S. & Waldmann, H. 2010. Bioactivity-guided navigation of chemical space. Accounts of chemical research, 43(8), 1103-1114.

[13]. Bucar, F., Wube, A. & Schmid, M. 2013. Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports, 30(4), 525-545.

[14]. Bumpus, S. B., Evans, B. S., Thomas, P. M., Ntai, I. & Kelleher, N. L. 2009. A proteomics approach to discovering natural products and their biosynthetic pathways. Nature Biotechnology, 27(10), 951-956.

[15]. Buriani, A., Garcia-Bermejo, M. L. & Bosisio, E., 2012. Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. Journal of Ethnopharmacology, 140(3), 535-544.

[16]. Burke, M. D. & Lalic, G. 2002. Teaching target-oriented and diversity-oriented organic synthesis at Harvard University. Chemistry & Biology, 9(5), 535-541.

[17]. Butler, M. S. 2008. Natural products to drugs: natural product-derived compounds in clinical trials. Natural product reports, 25(3), 475-516.

[18]. Cao, M., Wang, J., Yao, L., Xie, S., Du, J. & Zhao, X. 2014. Authentication of animal signatures in traditional Chinese medicine of Lingyang Qingfei Wan using routine molecular diagnostic assays. Molecular Biology Reports, 41, 2485-2491.

[19]. Chan, J. N., Nislow, C. & Emili, A. 2010. Recent advances and method development for drug target identification. Trends in pharmacological sciences, 31(2), 82-88.

[20]. Chang, J., Kim, Y. & Kwon, H. 2016. Advances in identification and validation of protein targets of natural products without chemical modification. Natural Product Reports, 33(5), 719-730.

[21]. Chapman, T. 2003. Lab automation and robotics: Automation on the move. Nature, 421(6923), 661-663.

[22]. Chen, L., Jiang, S., Roos, D., & Yu, H. Y. (2020). Investigation of Potential in vivo Cleavage of Biotherapeutic Protein by Immunocapture-LC/MS. Journal of Applied Bioanalysis, 6(1), 12–25.

[23]. Chen, X., Xiang, L., Ruan, H., Ouyang, K., Yan, S. & Shang, Y. 2017. Identification of crude drugs in the Japanese pharmacopoeia using a DNA barcoding system. Scientific Reports, 7(1), 42325.

[24]. Chin, Y. W., Balunas, M. J. & Chai, H. B., 2006. Drug discovery from natural sources. The AAPS journal, 8, E239-E253.

[25]. Clark, A. M. 1996. Natural products as a resource for new drugs. Pharmaceutical research, 13, 1133-1141.

[26]. Congreve, M., Carr, R., Murray, C. & Jhoti, H. 2003. A ‘rule of three’ for fragment-based lead discovery? Drug discovery today, 8(19), 876-877.

[27]. Crews, C. M., Collins, J. L. & Lane, W. S., 1994. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 alpha. Journal of Biological Chemistry, 269(22), 15411-15414.

[28]. Dalbeth, N., Lauterio, T. J. & Wolfe, H. R. 2014. Mechanism of action of colchicine in the treatment of gout. Clinical Therapeutics, 36(10), 1465-1479.

[29]. Dalisay, D. S. & Molinski, T. F. 2010. Structure elucidation at the nanomole scale. 3. Phorbasides G− I from Phorbas sp. Journal of natural products, 73(4), 679-682.

[30]. Dalisay, D. S., Morinaka, B. I., Skepper, C. K. & Molinski, T. F. 2009. A tetrachloro polyketide hexahydro-1 H-isoindolone, muironolide A, from the marine sponge Phorbas sp. natural products at the nanomole scale. Journal of the American Chemical Society, 131(22), 7552-7553.

[31]. David, B., Wolfender, J. L. & Dias, D. A. 2015 . The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews, 14, 299-315.

[32]. Duch, W., Swaminathan, K. & Meller, J. 2007. Artificial intelligence approaches for rational drug design and discovery. Current Pharmaceutical Design, 13(14), 1497-1508.

[33]. Ebada, S. S., Edrada, R. A., Lin, W. & Proksch, P. 2008. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nature Protocols, 3(12), 1820-1831.

[34]. Eglen, R. M. & Randle, D. H. 2015. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay and Drug Development Technologies, 13(5), 262-265.

[35]. Elumalai, N., Berg, A., Natarajan, K., Scharow, A. & Berg, T. 2015. Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a. Angewandte Chemie, 127(16), 4840-4845.

[36]. Epstein, S. 2013. The phenomenon of microbial uncultivability. Current Opinion in Microbiology, 16(5), 636-642.

[37]. Esch, E. W., Bahinski, A. & Huh, D. 2015. Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 14(4), 248-260.

[38]. Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R. & Fenical, W. 2003. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angewandte Chemie International Edition, 42(3), 355-357.

[39]. Fellenberg, M., Çoksezen, A. & Meyer, B. 2010. Characterization of picomole amounts of oligosaccharides from glycoproteins by 1 H NMR spectroscopy. Angewandte Chemie International Edition, 14(49), 2630-2633.

[40]. Fenical, W. & Jensen, P. R. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nature chemical biology, 2(12), 666-673.

[41]. Ganesan, A. 2008. The impact of natural products upon modern drug discovery. Current opinion in chemical biology, 12(3), 306-317.

[42]. Ganie, S. H., Upadhyay, P., Das, S. & Sharma, M. P. 2015. Authentication of medicinal plants by DNA markers. Plant Gene, 4, 83-99.

[43]. Gantait, S., Debnath, S. & Nasim Ali, M. 2014. Genomic profile of the plants with pharmaceutical value. 3 Biotech, 4, 563-578.

[44]. Ghorbani, A., Saeedi, Y. & de Boer, H. J. 2017. Unidentifiable by morphology: DNA barcoding of plant material in local markets in Iran. PLOS ONE, 12(4), e0175722.

[45]. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. 2011. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Reviews Drug Discovery, 10(3), 197-208.

[46]. Goss, R. J., Shankar, S. & Abou Fayad, A. 2012. The generation of “unnatural” products: Synthetic biology meets synthetic chemistry. Natural Product Reports, 29(8), 870-889.

[47]. Grabowski, K., Baringhaus, K.-H., Schneider, G. 2008. Scaffold diversity of natural products: inspiration for combinatorial library design. Natural product reports, 25(5), 892-904.

[48]. Guan, D. & Chen, Z. 2014. Challenges and recent advances in affinity purification of tag-free proteins. Biotechnology Letters, 36, 1391-1406.

[49]. Gupta, A., Müller, A. T., Huisman, B. J., Fuchs, J. A., Schneider, P. & Schneider, G. 2018. Generative recurrent networks for de novo drug design. Molecular Informatics, 37(1-2), 1700111.

[50]. Hart, C. P. 2005. Finding the target after screening the phenotype. Drug Discovery Today, 10(7), 513-519.

[51]. Harvey, A. L., Edrada-Ebel, R., Quinn, R. J. 2015. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111-129.

[52]. Harvey, C. J., Puglisi, J. D., Pande, V. S., Cane, D. E. & Khosla, C. 2012. Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: Selectivity in the ribosome macrolide binding pocket. Journal of the American Chemical Society, 134(29), 12259-12265.

[53]. Hemphill, C. F. P., Sureechatchaiyan, P. & Kassack, M. U., 2017. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. The Journal of Antibiotics, 70(6), 726-732.

[54]. Hubert, J., Nuzillard, J.-M., Renault, J.-H. 2017. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochemistry Reviews, 16, 55-95.

[55]. Hughes, C. C., MacMillan, J. B., Gaudêncio, S. P., Fenical, W. & La Clair, J. J. 2009. Ammosamides A and B target myosin. Angewandte Chemie, 121(4), 742-746.

[56]. Hung, M. W., Zhang, Z. J., Li, S., (2012). From omics to drug metabolism and high content screen of natural product in zebrafish: A new model for discovery of neuroactive compound. Evidence-Based Complementary and Alternative Medicine, 2012.

[57]. Hussain, A., Rather, M. A. & Dar, M. S., 2017. Novel bioactive molecules from Lentzea violacea strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorganic & Medicinal Chemistry Letters, 27(11), 2579-2582.

[58]. Jones, R. N., Fritsche, T. R., Sader, H. S. & Ross, J. E. 2006. Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant gram-positive cocci. Antimicrobial Agents and Chemotherapy, 50(7), 2583-2586.

[59]. Kaiser, M., Wetzel, S., Kumar, K. & Waldmann, H. 2008. Biology-inspired synthesis of compound libraries. Cellular and Molecular Life Sciences, 65, 1186-1201.

[60]. Katz, L., Baltz, R. H. 2016. Natural product discovery: past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 155-176.

[61]. Kim, E., Moore, B. S. & Yoon, Y. J. 2015. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nature Chemical Biology, 11(9), 649-659.

[62]. King, R. D., Rowland, J., Oliver, S. G., (2009). The automation of science. Science, 324(5923), 85-89.

[63]. Kingston, D. G. 2011. Modern natural products drug discovery and its relevance to biodiversity conservation. Journal of Natural Products, 74(3), 496-511.

[64]. Kiyama, R. 2017. DNA microarray-based screening and characterization of traditional Chinese medicine. Microarrays, 6(1), 4.

[65]. Kjer, J., Debbab, A., Aly, A. H. & Proksch, P. 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479-490.

[66]. Kola, I., Landis, J. 2004. Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3(8), 711-716.

[67]. Kusari, S., Hertweck, C., Spiteller, M. 2012. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology, 19(7), 792-798.

[68]. Lagunin, A., Stepanchikova, A., Filimonov, D. & Poroikov, V. 2000. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747-748.

[69]. Lahlou, M. 2013. The success of natural products in drug discovery. Pharmacology & Pharmacy, 4(3), 17-31.

[70]. Lam, K. S. 2007. New aspects of natural products in drug discovery. Trends in microbiology, 15(6), 279-289.

[71]. Lao, Y., Wang, X., Xu, N., Zhang, H. & Xu, H. 2014. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. Journal of Ethnopharmacology, 155(1), 1-8.

[72]. Lee, H., Lee, J. W. 2016. Target identification for biologically active small molecules using chemical biology approaches. Archives of Pharmacal Research, 39, 1193-1201.

[73]. Leonti, M., Verpoorte, R. 2017. Traditional Mediterranean and European herbal medicines. Journal of Ethnopharmacology, 199, 161-167.

[74]. Lewis, K., Epstein, S., D’onofrio, A. & Ling, L. L. 2010. Uncultured microorganisms as a source of secondary metabolites. The Journal of Antibiotics, 63(8), 468-476.

[75]. Li, F.-S. & Weng, J.-K. 2017. Demystifying traditional herbal medicine with modern approach. Nature Plants, 3(8), 1-7.

[76]. Li, J. W.-H. & Vederas, J. C. 2009. Drug discovery and natural products: End of an era or an endless frontier? Science, 325(5937), 161-165.

[77]. Li, Z. H., Alex, D. & Siu, S. O., (2011). Combined in vivo imaging and omics approaches reveal metabolism of icaritin and its glycosides in zebrafish larvae. Molecular BioSystems, 7(7), 2128-2138.

[78]. Lipinski, C. A. 2000. Drug-like properties and the causes of poor solubility and poor permeability. Journal of pharmacological and toxicological methods, 44(1), 235-249.

[79]. Liu, X. & Locasale, J. W. 2017. Metabolomics: a primer. Trends in Biochemical Sciences, 42(4), 274-284.

[80]. Lomenick, B., Hao, R., Jonai, N., (2009). Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences, 106(51), 21984-21989.

[81]. Lomenick, B., Olsen, R. W. & Huang, J. 2011. Identification of direct protein targets of small molecules. ACS chemical biology, 6(1), 34-46.

[82]. Lum, J. H., Fung, K. L. & Cheung, P. Y., (2002). Proteome of Oriental ginseng Panax ginseng CA Meyer and the potential to use it as an identification tool. PROTEOMICS: International Edition, 2(9), 1123-1130.

[83]. Luzhetskyy, A., Pelzer, S., & Bechthold, A. 2007. The future of natural products as a source of new antibiotics. Current opinion in investigational drugs, 8(8), 608-613.

[84]. Lv, C., Wu, X. & Wang, X., 2017. The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Scientific Reports, 7(1), 352.

[85]. MacConnell, A. B., Price, A. K. & Paegel, B. M. 2017. An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Combinatorial Science, 19(3), 181-192.

[86]. MacMillan, J. B., Xiong-Zhou, G., Skepper, C. K. & Molinski, T. F. 2008. Phorbasides A− E, Cytotoxic Chlorocyclopropane Macrolide Glycosides from the Marine Sponge Phorbas sp. CD Determination of C-Methyl Sugar Configurations. The Journal of Organic Chemistry, 73(10), 3699-3706.

[87]. Maier, M. E. 2015. Design and synthesis of analogs of natural products. Organic & Biomolecular Chemistry, 13(19), 5302-5343.

[88]. Maloney, K. N., Macmillan, J. B. & Kauffman, C. A., (2009). Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Organic Letters, 11(23), 5422-5424.

[89]. Martínez-Esteso, M. J., Martínez-Márquez, A., Sellés-Marchart, S., Morante-Carriel, J. A., Bru-Martínez, R. 2015. The role of proteomics in progressing insights into plant secondary metabolism. Frontiers in Plant Science, 6, 504.

[90]. Mateus, A., Kurzawa, N. & Becher, I., (2015). Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols, 10(10), 1567-1593.

[91]. Mathur, S. & Hoskins, C. 2017. Drug development: Lessons from nature. Biomedical reports, 6(6), 612–614.

[92]. https://doi.org/10.3892/br.2017.909

[93]. Matsunaga, S. & Fusetani, N. 1995. Theonellamides AE, cytotoxic bicyclic peptides, from a marine sponge Theonella sp. The Journal of Organic Chemistry, 60(5), 1177-1181.

[94]. McChesney, J. D., Venkataraman, S. K. & Henri, J. T. 2007. Plant natural products: back to the future or into extinction? Phytochemistry, 68(14), 2015-2022.

[95]. McFedries, A., Schwaid, A. & Saghatelian, A. 2013. Methods for the elucidation of protein-small molecule interactions. Chemistry & Biology, 20(5), 667-673.

[96]. Meanwell, N. A. 2016. Improving drug design: An update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chemical Research in Toxicology, 29(4), 564-616.

[97]. Medema, M. H. & Fischbach, M. A. 2015. Computational approaches to natural product discovery. Nature Chemical Biology, 11(9), 639-648.

[98]. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. 2018. De novo design of bioactive small molecules by artificial intelligence. Molecular Informatics, 37(1-2), 1700153.

[99]. Meshnick, S. R. 2002. Artemisinin: mechanisms of action, resistance and toxicity. International Journal for Parasitology, 32(13), 1655-1660.

[100]. Miller, W. R., Bayer, A. S., Arias, C. A. 2016. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harbor Perspectives in Medicine, 6(11).

[101]. Mishra, P., Kumar, A., Nagireddy, A., Mani, D. N., Shukla, A. K., Tiwari, R. & Sundaresan, V. 2016. DNA barcoding: An efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnology Journal, 14(1), 8-21.

[102]. Montaser, R., Luesch, H. 2011. Marine natural products: a new wave of drugs? Future medicinal chemistry, 3(12), 1475-1489.

[103]. Moussa, M., Ebrahim, W. & Bonus, M., 2019. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances, 9(3), 1491-1500.

[104]. Navarri, M., Jégou, C. & Meslet-Cladière, L., (2016). Deep subseafloor fungi as an untapped reservoir of amphipathic antimicrobial compounds. Marine Drugs, 14(3), 50.

[105]. Newman, D. 2017. Screening and identification of novel biologically active natural compounds. F1000Research, 6.

[106]. Newman, D. J. 2008. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? Journal of medicinal chemistry, 51(9), 2589-2599.

[107]. Newman, D. J., Cragg, G. M. 2015. Endophytic and epiphytic microbes as “sources” of bioactive agents. Frontiers in Chemistry, 3, 34.

[108]. Nicholson, J. K. & Lindon, J. C. 2008. Metabonomics. Nature, 455(7216), 1054-1056.

[109]. Nisa, H., Kamili, A. N., Nawchoo, I. A., Shafi, S., Shameem, N. & Bandh, S. A. 2015. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microbial Pathogenesis, 82, 50-59.

[110]. Nishimura, S., Arita, Y. & Honda, M., 2010. Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling. Nature Chemical Biology, 6(7), 519-526.

[111]. Novick, D. & Rubinstein, M. 2012. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins. In Cytokine Protocols (pp. 195-214).

[112]. Ntie-Kang, F., Lifongo, L. L., Judson, P. N., Sippl, W. & Efange, S. M. 2014. How “drug-like” are naturally occurring anti-cancer compounds? Journal of molecular modeling, 20, 1-13.

[113]. Ojima, I. 2008. Modern natural products chemistry and drug discovery. Journal of medicinal chemistry, 51(9), 2587-2588.

[114]. Özdemir, V. 2015. Omics 2.0: An accelerator for global science, systems medicine and responsible innovation. OMICS: A Journal of Integrative Biology, 19(10), 579.

[115]. Özdemir, V. & Hekim, N. 2018. Birth of industry 5.0: Making sense of big data with artificial intelligence, “the internet of things” and next-generation technology policy. OMICS: A Journal of Integrative Biology, 22(1), 65-76.

[116]. Özdemir, V. & Patrinos, G. P. 2017. David Bowie and the art of slow innovation: a fast-second winner strategy for biotechnology and precision medicine global development. OMICS: A Journal of Integrative Biology, 21(11), 633-637.

[117]. Park, H.-W., In, G., Kim, J.-H., Cho, B.-G., Han, G.-H. & Chang, I.-M. 2014. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS. Journal of Ginseng Research, 38(1), 59-65.

[118]. Pascolutti, M. & Quinn, R. J. 2014. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discovery Today, 19(3), 215-221.

[119]. Perez-Pinera, P., Ousterout, D. G. & Gersbach, C. A. 2012. Advances in targeted genome editing. Current Opinion in Chemical Biology, 16(3-4), 268-277.

[120]. Peterson, R. M., Huang, T., Rudolf, J. D., Smanski, M. J. & Shen, B. 2014. Mechanisms of self-resistance in the platensimycin-and platencin-producing Streptomyces platensis MA7327 and MA7339 strains. Chemistry & Biology, 21(3), 389-397.

[121]. Piel, J. 2009. Metabolites from symbiotic bacteria. Natural Product Reports, 26(3), 338-362.

[122]. Pink, R., Hudson, A., Mouriès, M. A. & Bendig, M. 2005. Opportunities and challenges in antiparasitic drug discovery. Nature reviews Drug discovery, 4(9), 727-740.

[123]. Praveen, M. 2024. Multi-epitope-based vaccine designing against Junín virus glycoprotein: immunoinformatics approach. Futur J Pharm Sci 10, 29 (2024).

[124]. https://doi.org/10.1186/s43094-024-00602-8

[125]. Praveen M. 2024. Characterizing the West Nile Virus’s polyprotein from nucleotide sequence to protein structure – Computational tools. J Taibah Univ Med Sci. 16;19(2):338-350. doi: 10.1016/j.jtumed.2024.01.001. PMID: 38304694; PMCID: PMC10831166.

[126]. Praveen, M., Ullah, I., Buendia, R., Khan. I. A, Sayed, M. G., Kabir, R., Bhat, M. A. & Yaseen, M. 2024. Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals (Basel). 17(1):134. doi: 10.3390/ph17010134. PMID: 38276007; PMCID: PMC10819299.

[127]. Pulice, G., Pelaz, S. & Matías-Hernández, L. 2016. Molecular farming in Artemisia annua, a promising approach to improve anti-malarial drug production. Frontiers in Plant Science, 7, 329.

[128]. Reker, D., Rodrigues, T., Schneider, P. & Schneider, G. 2014. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proceedings of the National Academy of Sciences, 111(11), 4067-4072.

[129]. Rishton, G. M. 2008. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. The American journal of cardiology, 101(10), S43-S49.

[130]. Rix, U., Gridling, M. & Superti-Furga, G. 2012. Compound immobilization and drug-affinity chromatography. In Chemical Proteomics: Methods and Protocols (pp. 25-38).

[131]. Rix, U., Superti-Furga, G. 2009. Target profiling of small molecules by chemical proteomics. Nature Chemical Biology, 5(9), 616-624.

[132]. Rodrigues, T., Reker, D., Schneider, P. & Schneider, G. 2016. Counting on natural products for drug design. Nature Chemistry, 8(6), 531-541.

[133]. Rutledge, P. J., Challis, G. L. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 13(8), 509-523.

[134]. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. 2012. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, 11(3), 191-200.

[135]. Scherlach, K. & Hertweck, C. 2009. Triggering cryptic natural product biosynthesis in microorganisms. Organic & Biomolecular Chemistry, 7(9), 1753-1760.

[136]. Schiewe, H.-J., Zeeck, A. 1999. Cineromycins, γ-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. The Journal of Antibiotics, 52(7), 635-642.

[137]. Schirle, M., Bantscheff, M. & Kuster, B. 2012. Mass spectrometry-based proteomics in preclinical drug discovery. Chemistry & Biology, 19(1), 72-84.

[138]. Schneider, G., Reker, D., Rodrigues, T. & Schneider, P. 2014. Coping with polypharmacology by computational medicinal chemistry. Chimia, 68(9), 648.

[139]. Schreiber, S. L. 2000. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science, 287(5460), 1964-1969.

[140]. Searle, P. A. & Molinski, T. F. 1995. Phorboxazoles A and B: Potent cytostatic macrolides from marine sponge Phorbas species. Journal of the American Chemical Society, 117(31), 8126-8131.

[141]. Shen, B. 2015. A new golden age of natural products drug discovery. Cell, 163(6), 1297-1300.

[142]. Shi, Y., Murrey, H. E., Ahn, K., Weng, N., & Patel, S. (2020). LC-MS/MS assay for the simultaneous quantitation of thromboxane B2 and prostaglandin E2 to evaluate cyclooxygenase inhibition in human whole blood. Journal of Applied Bioanalysis, 6(3), 131–144.

[143]. Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. 2014) Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334-395.

[144]. Soejarto, D. & Farnsworth, N. 1989. Tropical rain forests: potential source of new drugs? Perspectives in Biology and Medicine, 32(2), 244-256.

[145]. Sparkes, A., Aubrey, W. & Byrne, E., (2010). Towards robot scientists for autonomous scientific discovery. Automated Experimentation, 2, 1-11.

[146]. Srivastava, K., Sampson, H. A., Emala, C. W., Sr & Li, 2013. The anti-asthma herbal medicine ASHMI acutely inhibits airway smooth muscle contraction via prostaglandin E2 activation of EP2/EP4 receptors. American Journal of Physiology-Lung Cellular and Molecular Physiology, 305(12), L1002-L1010.

[147]. Stepanchikova, A., Lagunin, A., Filimonov, D. & Poroikov, V. 2003. Prediction of biological activity spectra for substances: Evaluation on the diverse sets of drug-like structures. Current Medicinal Chemistry, 10(3), 225-233.

[148]. Sticher, O. 2008. Natural product isolation. Natural Product Reports, 25(3), 517-554.

[149]. Stockfleth, E. & Bastian, M. 2018. Pharmacokinetic and pharmacodynamic evaluation of ingenol mebutate for the treatment of actinic keratosis. Expert Opinion on Drug Metabolism & Toxicology, 14(9), 911-918.

[150]. Stuart, K. A., Welsh, K., Walker, M. C. & Edrada-Ebel, R. 2020. Metabolomic tools used in marine natural product drug discovery. Expert Opinion on Drug Discovery, 15(4), 499-522.

[151]. Thomford, N. E., Dzobo, K. & Chopera, D. (2016). In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules, 21(7), 891.

[152]. Thomford, N. E., Senthebane, D. A. & Rowe, A., (2018). Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6), 1578.

[153]. Thompson, K. & Newmaster, S. 2014. Molecular taxonomic tools provide more accurate estimates of species richness at less cost than traditional morphology-based taxonomic practices in a vegetation survey. Biodiversity & Conservation, 23(6), 1411-1424.

[154]. Valecha, N., Looareesuwan, S. & Martensson, A. 2010. Arterolane, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: a phase II, multicenter, randomized, dose-finding clinical trial. Clinical infectious diseases, 51(6), 684-691.

[155]. Van Molle, I., Thomann, A. & Buckley, D. L., (2012). Dissecting fragment-based lead discovery at the von Hippel-Lindau protein: hypoxia inducible factor 1α protein-protein interface. Chemistry & biology, 19(10), 1300-1312.

[156]. Vartoukian, S. R., Palmer, R. M. & Wade, W. G. 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiology Letters, 309(1), 1-7.

[157]. Von Nussbaum, F., Brands, M. & Hinzen, B., (2006). Antibacterial natural products in medicinal chemistry—exodus or revival? Angewandte Chemie International Edition, 45(31), 5072-5129.

[158]. Wagenaar, M. M. 2008. Pre-fractionated microbial samples–the second generation natural products library at Wyeth. Molecules, 13(6), 1406-1426.

[159]. Wang, H. Z., Chu, Z. Z. & Chen, C. C., (2015). Recombinant passenger proteins can be conveniently purified by one-step affinity chromatography. PLOS ONE, 10(12), e0143598.

[160]. Weissman, K. J. 2016. Genetic engineering of modular PKSs: From combinatorial biosynthesis to synthetic biology. Natural Product Reports, 33(2), 203-230.

[161]. Wen, M. C., Wei, C. H & Hu, Z. Q., 2005. Efficacy and tolerability of antiasthma herbal medicine intervention in adult patients with moderate-severe allergic asthma. Journal of Allergy and Clinical Immunology, 116(3), 517-524.

[162]. Weng, J. K., Philippe, R. N. & Noel, J. P. 2012. The rise of chemodiversity in plants. Science (New York, N.Y.), 336(6089), 1667–1670. https://doi.org/10.1126/science.1217411

[163]. Weng, J.-K., Philippe, R. N. & Noel, J. P. 2012. The rise of chemodiversity in plants. Science, 336(6089), 1667-1670.

[164]. Wetzel, S., Bon, R. S., Kumar, K & Waldmann, H. 2011. Biology-oriented synthesis. Angewandte Chemie International Edition, 50(46), 10800-10826.

[165]. Wetzel, S., Klein, K. & Renner, S., (2009). Interactive exploration of chemical space with Scaffold Hunter. Nature chemical biology, 5(8), 581-583.

[166]. Wolfender, J.-L., Nuzillard, J.-M., Van Der Hooft, J. J., Renault, J.-H. & Bertrand, S. 2018. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Analytical Chemistry, 91(1), 704-742.

[167]. Xie, G., Plumb, R. & Su, M., (2008). Ultra‐performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. Journal of Separation Science, 31(6‐7), 1015-1026.

[168]. Yan, X., Yeh, C., & Zou, L. (2020). Clinical Applications of Circulating Tumor DNA, Circulating Tumor Cells, and Exosomes as Liquid Biopsy-Based Tumor Biomarkers. Journal of Applied Bioanalysis, 6(3), 107–130.

[169]. Yang, N., Liang, B. & Srivastava, K., 2013. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. Phytochemistry, 95, 259-267.

[170]. Yarmush, M. L. & Banta, S. 2003. Metabolic engineering: advances in modeling and intervention in health and disease. Annual Review of Biomedical Engineering, 5(1), 349-381.

[171]. Yuliana, N. D., Khatib, A., Choi, H. & Verpoorte, R. 2011. Metabolomics for bioactivity assessment of natural products. Phytotherapy Research, 25(2), 157-169.

[172]. Zähner, H. 1977. Some aspects of antibiotics research. Angewandte Chemie International Edition in English, 16(10), 687-694.

[173]. Zhang, L., Tan, J., Han, D. & Zhu, H. 2017. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680-1685.

[174]. Zhang, N., Liu, L., Shan, G. & Cai, Q., (2016). Precursor-directed biosynthesis of new sansanmycin analogs bearing para-substituted-phenylalanines with high yields. The Journal of Antibiotics, 69(10), 765-768.

[175]. Zheng, Q., Wang, S., Liao, R. & Liu, W. 2016. Precursor-directed mutational biosynthesis facilitates the functional assignment of two cytochromes P450 in thiostrepton biosynthesis. ACS Chemical Biology, 11(10), 2673-2678.

[176]. Zuegg, J. & Cooper, M. A. 2012. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Current topics in medicinal chemistry, 12(14), 1500-1513.