OPEN-ACCESS PEER-REVIEWED
1*Dr. Dileep Pulugu, 2Dr. Minal Bhatia, 3Dr.Vinyl Kumar pahuja, 4Minakshi Sharma, 5Tirthankar Dalui, 6Malaika Panchal
*Professor, Department of Computer Science and Engineering, Malla Reddy College of Engineering and Technology, Kompally, Hyderabad
2Postgraduate Institute of Medical Education & Research, Chandigarh, India,
3Associate professor SSJGIMSR ALMORA, UTTARAKHAND MEDICAL UNIVERSITY , UTTARAKHAND,
4Manav Rachna University, Faridabad, Haryana,
5Assistant Professor, Department of Zoology Barasat College1.Kalyani Road Kolkata-700126 India,
6DY Patil University School of Medicine ,India Maharashtra
Abstract
Continuous glucose monitoring (CGM) has demonstrated considerable promise for improved diabetes management. However, limitations of existing CGM sensor technologies like inadequate accuracy, reliability, and calibration stability have restricted their extensive adoption in diabetes care. Recent technological improvements in CGM biosensors show the ability to conquer these limitations. This review summarizes current progress and the latest advancements in CGM sensor technology. Recent diabetes CGM biosensor research shows significant improvements across multiple technology facets like enhanced sensor sensitivity and specificity, simplified sensor calibration protocols, biocompatible minimally invasive materials, miniaturized flexible sensors, secure wireless data transmission, and seamless integration with insulin pumps and artificial intelligence systems for automated disease state detection and glycemic regulation. The latest diabetes CGM biosensor technological advancements demonstrate substantial progress toward overcoming the limitations of earlier-generation sensors. This offers optimism for increased effectiveness and adoption of CGM to empower advanced glycemic regulation and improve health outcomes in people with diabetes. Continued multidisciplinary research is essential to drive additional innovations in CGM sensor systems toward ideal closed-loop automated diabetes care.
Keywords: Continuous glucose monitoring, biosensors, glycemic, diabetes, SMBG
References
[1]. Abbott. (2020). Accuracy in Freestyle Libre 2 user manual. Retrieved from https://www.freestylelibre.us/libre/help/user-manual.html
[2]. Abbott. (2022). Freestyle Libre 2. Retrieved from https://www.freestylelibre.us/libre2/home.html
[3]. Aleppo, G., Laffel, L. M., Ahmann, A. J., Hirsch, I. B., Kruger, D. F., Peters, A., & Wood, J. R. (2021). Applying trend arrows to the diabetes device display for decision making: A guide. Journal of Diabetes Science and Technology, 15(2), 201–211. https://doi.org/10.1177/1932296820959690
[4]. American Diabetes Association. (2022). Statistics about diabetes. Retrieved from https://www.diabetes.org/
[5]. Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100. https://doi.org/10.1016/j.smim.2007.11.004
[6]. Bahadoor, K., & Flynn, E. P. (2018). New advances in technologies used in amperometric glucose sensors. Biosensors, 8(4), 113.
[7]. Bailey, T., Bode, B. W., Christiansen, M. P., Klaff, L. J., & Alva, S. (2015). The performance and usability of factory-calibrated flash glucose monitoring. Diabetes Technology & Therapeutics, 17(11), 787–794.
[8]. Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363–371. https://doi.org/10.1016/j.tibtech.2014.04.005
[9]. Bandodkar, A. J., Wang, J., & Wang, J. (2022). Skin-integrated wearable systems. Nature Reviews Materials, 7(1), 84-100. https://doi.org/10.1038/s41578-021-00360-3
[10]. Bann, S. A., Hercus, J. C., Atkins, P., Alkhairy, A., Loyal, J. P., Sekhon, M., & Thompson, D. J. (2024). Accuracy of a Continuous Glucose Monitor in the Intensive Care Unit: A Proposed Accuracy Standard and Calibration Protocol for Inpatient Use. Diabetes Technology & Therapeutics. Advanced online publication. https://doi.org/10.1089/dia.2024.0074
[11]. Battelino, T., Conget, I., Olsen, B., Schütz-Fuhrmann, I., Hommel, E., Hoogma, R., Schierloh, U., Sulli, N., Bolinder, J., & SWITCH Study Group. (2012). The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial. Diabetologia, 55(12), 3155–3162. https://doi.org/10.1007/s00125-012-2708-9
[12]. Beck, R. W., Bergenstal, R. M., Cheng, P., Kollman, C., Carlson, A. L., Johnson, M. L., & Robiner, W. N. (2020). TIR/HbA1c and Hyperglycemia indices correlation. Journal of Diabetes Science and Technology, 14(4), 613–626. https://doi.org/10.1177/1932296819892995
[13]. Beck, R. W., Riddlesworth, T., Ruedy, K., Ahmann, A., Bergenstal, R., Haller, S., Kollman, C., Kruger, D., McGill, J. B., Polonsky, W., Toschi, E., Wolpert, H., & Price, D. (2017). Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA, 317(4), 371–378. https://doi.org/10.1001/jama.2016.19975
[14]. Bergenstal, R. M., Layne, J. E., Zisser, H., Rasbach, L. E., Burmeister-Morton, S., Ratner, L. E., Pettus, J., & Beck, R. W. (2020). Effectiveness of home-closed loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technology & Therapeutics, 22(2), 140–146. https://doi.org/10.1089/dia.2019.0384
[15]. Bourke, S., Munira, S. L., Parkinson, A., Lancsar, E., & Desborough, J. (2023). Exploring the barriers and enablers of diabetes care in a remote Australian context: A qualitative study. PloS One, 18(7), e0286517. https://doi.org/10.1371/journal.pone.0286517
[16]. Caduff, A., Mueller, M., Megej, A., Dewarrat, F., Suri, R. E., Klisic, J., Donath, M., Zakharov, P., Schaub, D., Stahel, W. A., & Talary, M. S. (2011). Characteristics of a multisensor system for non-invasive glucose monitoring with external validation and prospective evaluation. Biosensors & Bioelectronics, 26(9), 3794–3800. https://doi.org/10.1016/j.bios.2011.02.034
[17]. Castellana, M., Parisi, C., Di Molfetta, S., Di Gioia, L., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L., & Giorgino, F. (2020). Efficacy and safety of flash glucose monitoring in patients with type 1 and type 2 diabetes: A systematic review and meta-analysis. BMJ Open Diabetes Research & Care, 8(1), e001092. https://doi.org/10.1136/bmjdrc-2019-001092
[18]. Contreras, I., & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: Literature review. Journal of Medical Internet Research, 20(5), e10775. https://doi.org/10.2196/10775
[19]. Davis, G. M., Spanakis, E. K., Migdal, A. L., Singh, L. G., Albury, B., Urrutia, M. A., Zamudio-Coronado, K. W., Scott, W. H., Doerfler, R., Lizama, S., Satyarengga, M., Munir, K., Galindo, R. J., Vellanki, P., Cardona, S., Pasquel, F. J., Peng, L., & Umpierrez, G. E. (2021). Accuracy of Dexcom G6 continuous glucose monitoring in non-critically ill hospitalized patients with diabetes. Diabetes Care, 44(7), 1641–1646. https://doi.org/10.2337/dc20-2856
[20]. de Kreutzenberg, S. V. (2022). Telemedicine for the clinical management of diabetes; implications and considerations after COVID-19 experience. High Blood Pressure & Cardiovascular Prevention, 29(4), 319–326. https://doi.org/10.1007/s40292-022-00524-7
[21]. Dexcom Inc. (2022). Continuous monitoring of glucose levels with Dexcom G6. https://www.dexcom.com/g6-cgm-system
[22]. Feldman, A., & Goldberg, E. (2022). Continuous glucose monitoring: A general overview of the use of the technology and its application in the clinical process. Diabetes Spectrum, 35(3), 250–260. https://doi.org/10.2337/ds21-0089
[23]. Fokkert, M. J., van Dijk, P. R., Edens, M. A., Abbes, S., de Jong, D., Slingerland, R. J., & Bilo, H. J. (2017). Performance of the FreeStyle Libre flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Research & Care, 5(1), e000320. https://doi.org/10.1136/bmjdrc-2016-000320
[24]. Forlenza, G. P., Pinckey, S., Wadwa, R. P., & Messer, L. H. (2021). Closed loop systems in diabetes management: Optimization and prospects. Frontiers in Endocrinology, 12, 740640. https://doi.org/10.3389/fendo.2021.740640
[25]. Forlenza, G. P., Pinhas-Hamiel, O., Liljenquist, D. R., Shulman, D. I., Bailey, T. S., Bode, B. W., Wood, M. A., Buckingham, B. A., Kaiserman, K. B., Shin, J., Huang, S., Lee, S. W., & Kaufman, F. R. (2019). Safety evaluation of the MiniMed 670G system in children 7-13 years of age with type 1 diabetes. Diabetes Technology & Therapeutics, 21(1), 11–19. https://doi.org/10.1089/dia.2018.0264
[26]. Garg, S. K., & Akturk, H. K. (2017). Continuous glucose monitoring: It went further on with examples in the past, present, and future. Diabetes Technology & Therapeutics, 19(S2), S-3. https://doi.org/10.1089/dia.2017.0017
[27]. Garg, S. K., & Goyal, R. (2022). A systematic review of CCM with factory calibration has shown the efficacy of continuous glucose monitoring systems. Diabetes Technology & Therapeutics, 24(5), 251–252. https://doi.org/10.1089/dia.2021.0463
[28]. Garg, S. K., Liljenquist, D., Bode, B., Christiansen, M. P., Bailey, T. S., Brazg, R. L., Denham, D. S., Chang, A. R., Akturk, H. K., Dehennis, A., Tweden, K. S., & Kaufman, F. R. (2022). Evaluation of accuracy and safety of the next-generation up to 180-day long-term implantable Eversense continuous glucose monitoring system: The PROMISE study. Diabetes Technology & Therapeutics, 24(2), 84–92. https://doi.org/10.1089/dia.2021.0182
[29]. Gehr, B., Kulzer, B., Bangert, M., Hinrichs, S., & Hoss, U. (2018). Precision of a new interstitial continuous glucose monitoring in type 1 and 2 diabetic patients. Journal of Diabetes Science and Technology, 12(3), 707–713. https://doi.org/10.1177/1932296818759262
[30]. Gough, D. A., & Kumosa, L. S. (2010). Implantable glucose sensors: Reform and reforms, achievement and obstacles. Sensors, 10(8), 7947–7955. https://doi.org/10.3390/s100807947
[31]. Guan, Z., Li, H., Liu, R., Cai, C., Liu, Y., Li, J., Wang, X., Huang, S., Wu, L., Liu, D., Yu, S., Wang, Z., Shu, J., Hou, X., Yang, X., Jia, W., & Sheng, B. (2023). Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Reports Medicine, 4(10), 101213. https://doi.org/10.1016/j.xcrm.2023.101213
[32]. Healthline. (2022). Freestyle Libre CGM — Say bye-bye to the daily finger pricks. Retrieved from https://www.healthline.com/health/diabetesmine/freestyle-libre-cgm-no-more-routine-finger-sticks
[33]. Heinemann, L., & Freckmann, G. (2015). CGM versus FGM; or, continuous glucose monitoring is not flash glucose monitoring. Journal of Diabetes Science and Technology, 9(5), 947–950. https://doi.org/10.1177/1932296815603528
[34]. Holper, L., & Hengartner, M. P. (2020). Comparative efficacy of placebos in short-term antidepressant trials for major depression: A secondary meta-analysis of placebo-controlled trials. BMC Psychiatry, 20(1), 437. https://doi.org/10.1186/s12888-020-02839-y
[35]. Hommel, E., Olsen, B., Battelino, T., Conget, I., Schütz-Fuhrmann, I., Hoogma, R., Schierloh, U., Sulli, N., Gough, H., Castañeda, J., de Portu, S., Bolinder, J., & SWITCH Study Group. (2014). Impact of continuous glucose monitoring on quality of life, treatment satisfaction, and use of medical care resources: Analyses from the SWITCH study. Acta Diabetologica, 51(5), 845–851. https://doi.org/10.1007/s00592-014-0598-7
[36]. Horne, C., Cranston, I., Amos, M., & Flowers, K. (2023). Accuracy of continuous glucose monitoring in an insulin-treated population requiring haemodialysis. Journal of Diabetes Science and Technology, 17(4), 971–975. https://doi.org/10.1177/19322968231173447
[37]. Huang, X., Liang, B., Huang, S., Liu, Z., Yao, C., Yang, J., Zheng, S., Wu, F., Yue, W., Wang, J., Chen, H., & Xie, X. (2024). Integrated electronic/fluidic microneedle system for glucose sensing and insulin delivery. Theranostics, 14(4), 1662–1682. https://doi.org/10.7150/thno.92910
[38]. Ilag, L. L., Umpierrez, G. E., Spanakis, E. K., & Golden, S. H. (2022). State of the art review: Implementation of continuous glucose monitoring in the hospital and clinic settings. Journal of Diabetes Science and Technology, 7(5), 1488–1498. https://doi.org/10.1177/19322968221073324
[39]. International Diabetes Federation. (2019). Diabetes atlas (9th ed.). Retrieved from https://diabetesatlas.org/en/
[40]. Keenan, D. B., Mastrototaro, J. J., Parker, R. S., Steil, G. M., & Zisser, H. C. (2022). Three closed-loop insulin delivery systems of the third generation. Nature Reviews Endocrinology, 18(3), 173–186. https://doi.org/10.1038/s41574-021-00552-1
[41]. Keenan, D. B., Shah, N. D., Van Houten, H. K., Berget, C. J., Alexeev, Y., Myint, K., Petersen, M., & Naessens, J. M. (2021). The accuracy of real-time unintermittent data gathered by multiple diabetes devices. Diabetes Technology & Therapeutics, 23(5), 317–327. https://doi.org/10.1089/dia.2020.0449
[42]. Klonoff, D. C. (2007). Continuous glucose monitoring: They have presented the roadmap for the 21st century diabetes therapy. Diabetes Care, 28(5), 1231–1239. https://doi.org/10.2337/dc06-2624
[43]. Klonoff, D. C. (2022). Progress in continuous glucose monitoring: When comparing year 2022 with previous years it is possible to note certain advancements in the performance of CGM systems. Journal of Diabetes Science and Technology. https://doi.org/10.1177/19322968221135109
[44]. Klonoff, D. C., Ahn, D., & Drincic, A. (2017). Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Research and Clinical Practice, 133, 178–192. https://doi.org/10.1016/j.diabres.2017.08.005
[45]. Kropff, J., Choudhary, P., Neupane, S., Barnard, K., Bain, S. C., Kapitza, C., Forst, T., Link, M., Dehennis, A., & DeVries, J. H. (2017). Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care, 40(1), 63–68. https://doi.org/10.2337/dc16-1525
[46]. Kumar, A., Pandit, N., & Kumar, P. (2022). Continuous glucose monitoring systems. In StatPearls. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK565886/
[47]. Laffel, L. (2016). Improved accuracy of continuous glucose monitoring systems in pediatric patients with diabetes mellitus: Results from two studies. Diabetes Technology & Therapeutics, 18(Suppl 2), S223–S233. https://doi.org/10.1089/dia.2015.0380
[48]. Li, X. C., Cheng, Q., Zheng, Y. C., Wang, S. Y., Zhang, H., Wang, Y., Ren, H. M., & Dong, B. S. (2019). DIABETES: Artificial intelligence for diabetes. IEEE/CAA Journal of Automatica Sinica, 10(1), 6–35. https://doi.org/10.1109/JAS.2022.1003493
[49]. Lin, S. H., Wang, R., Coffey, S., Adeli, K., & Tropea, W. (2021). Fourth-generation technologies: Diabetes management for older and more vulnerable individuals with diabetes. Journal of Clinical Medicine, 10(21), 4859. https://doi.org/10.3390/jcm10214859
[50]. Lind, M., Polonsky, W., Hirsch, I. B., Heise, T., Bolinder, J., Dahlqvist, S., Schwarz, E., Ólafsdóttir, A. F., Frid, A., Wedel, H., Ahlén, E., Nyström, T., & Hellman, J. (2017). Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The GOLD randomized clinical trial. JAMA, 317(4), 379–387. https://doi.org/10.1001/jama.2016.19976
[51]. Luijf, J. M., DeVries, J. H., Zwinderman, K., Leelarathna, L., Nodale, M., & Caldwell, K. (2013). Proportional integrated Medtronic hybrid closed-loop system in type 1 diabetes at camp day and night closed-loop control. Diabetes Care, 36(7), e106–e107.
[52]. Lum, J., Sabbaghi, H., Alsaffar, H., Fontaine, P., Edelman, S., & Leong, K. (2018). The Freestyle Libre flash glucose monitoring system: Further technological advancements, use, and clinical relevance. Diabetes Technology & Therapeutics, 20(11), 750–758. https://doi.org/10.1089/dia.2018.0217
[53]. Manov, A. E., Chauhan, S., Dhillon, G., Dhaliwal, A., Antonio, S., Donepudi, A., Jalal, Y. N., Nazha, J., Banal, M., & House, J. (2023). The effectiveness of continuous glucose monitoring devices in managing uncontrolled diabetes mellitus: A retrospective study. Cureus, 15(7), e42545. https://doi.org/10.7759/cureus.42545
[54]. Martens, T., Beck, R. W., Bailey, R., Ruedy, K. J., Calhoun, P., Peters, A. L., Pop-Busui, R., Philis-Tsimikas, A., Bao, S., Umpierrez, G., Davis, G., Kruger, D., Bhargava, A., Young, L., McGill, J. B., Aleppo, G., Nguyen, Q. T., Orozco, I., Biggs, W., … MOBILE Study Group. (2021). Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: A randomized clinical trial. JAMA, 325(22), 2262–2272. https://doi.org/10.1001/jama.2021.7444
[55]. Martin, C. T., Criego, A. B., Carlson, A. L., & Bergenstal, R. M. (2019). Advanced Technology in the Management of Diabetes: Which Comes First-Continuous Glucose Monitor or Insulin Pump?. Current Diabetes Reports, 19(8), 50. https://doi.org/10.1007/s11892-019-1177-7
[56]. Miller, K. M., Kanapka, L. G., Rickels, M. R., Ahmann, A. J., Aleppo, G., Ang, L., Bhargava, A., Bode, B. W., Carlson, A., Chaytor, N. S., Gannon, G., Goland, R., Hirsch, I. B., Kiblinger, L., Kruger, D., Kudva, Y. C., Levy, C. J., McGill, J. B., O’Malley, G., Peters, A. L., … Pratley, R. (2022). Benefit of continuous glucose monitoring in reducing hypoglycemia is sustained through 12 months of use among older adults with type 1 diabetes. Diabetes Technology & Therapeutics, 24(6), 424–434. https://doi.org/10.1089/dia.2021.0503
[57]. Nobile, S., Marchionni, P., & Carnielli, V. P. (2017). Neonatal outcome of small for gestational age preterm infants. European Journal of Pediatrics, 176(8), 1083–1088. https://doi.org/10.1007/s00431-017-2957-1
[58]. Östenson, C.-G., Forster, A. S., Geelhoed-Duijvestijn, P., Lahtela, J., Weitgasser, R., Markert Jensen, M., & Pedersen-Bjergaard, U. (2018). People’s own reports of non-severe hypoglycaemia in Europe. Diabetic Medicine, 35(1), 79–92. https://doi.org/10.1111/dme.13553
[59]. Rebrin, K., Steil, G. M., van Antwerp, W. P., & Mastrototaro, J. J. (1999). Subcutaneous glucose predicts plasma glucose independent of insulin: Implications for continuous monitoring. The American Journal of Physiology, 277(3), E561–E571. https://doi.org/10.1152/ajpendo.1999.277.3.E561
[60]. Riddlesworth, Beck, Gal, Connor, Bergenstal, Lee, Huang, & Willi. (2022). Optimal use of continuous glucose monitoring in youth with type 1 diabetes: Recommendations in the clinical management of patients with type 1 diabetes based on the JDRF Continuous Glucose Monitoring Group. Diabetes Care, 45(1), 8–15. https://doi.org/10.2337/dc21-1730
[61]. Rubelj, K., Stipančić, G., La Grasta Sabolić, L., & Požgaj Šepec, M. (2021). Continuous glucose monitoring and type 1 diabetes mellitus control in child, adolescent and young adult population – Arguments for its use and effects. Acta Clinica Croatica, 60(4), 609–616. https://doi.org/10.20471/acc.2021.60.04.07
[62]. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., Williams, R., & IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843
[63]. Shah, V. N., Shoskes, A., Tawfik, B., & Garg, S. K. (n.d.). Closed-loop system in the management of diabetes: Time elements which include past, present, and future. Diabetes Technology & Therapeutics, S2, S-54–S-64.
[64]. Singh, S. U., Chatterjee, S., Lone, S. A., Ho, H. H., Kaswan, K., Peringeth, K., Khan, A., Chiang, Y. W., Lee, S., & Lin, Z. H. (2022). Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochimica Acta, 189(6), 236. https://doi.org/10.1007/s00604-022-05317-2
[65]. Sun, T., Liu, J., & Chen, C. J. (2024). Calibration algorithms for continuous glucose monitoring systems based on interstitial fluid sensing. Biosensors & Bioelectronics, 260, 116450. https://doi.org/10.1016/j.bios.2024.116450
[66]. T1International. (2022). Continuous glucose monitors. Retrieved from https://t1international.com/continuous-glucose-monitors/
[67]. Wadwa, R. P., Laffel, L. M., Shah, V. N., & Garg, S. K. (2018). Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technology & Therapeutics, 20(6), 395–402. https://doi.org/10.1089/dia.2018.0150
[68]. Wan, W., Skandari, M. R., Minc, A., Nathan, A. G., Winn, A., Zarei, P., O’Grady, M., & Huang, E. S. (2018). Cost-effectiveness of continuous glucose monitoring for adults with type 1 diabetes compared with self-monitoring of blood glucose: The DIAMOND randomized trial. Diabetes Care, 41(6), 1227–1234. https://doi.org/10.2337/dc17-1821
[69]. Wang, J., & Lee, H. S. (2013). Microfabricated electrochemical glucose biosensors. In Sensors and Microsystems (pp. 397-414).
[70]. Wang, S., Li, M., Wu, J., Kim, D. H., Lu, N., Su, Y., Kang, Z., Huang, Y., & Rogers, J. A. (2022). An intrinsically stretchable transistor array via scalable fabrication of skin electronics. Nature, 603(7902), 63-69. https://doi.org/10.1038/s41586-021-04351-y
[71]. Ye, X., Wang, Y., Tan, Y., Li, L., Liu, C., & Jiang, H. (2022). Personalized machine learning model for enhancing the adjustment of the point accuracy of real-time CGM. IEEE Journal of Biomedical and Health Informatics, 26(6), 2775–2783.
[72]. Yu, X., Mu, J., Zhang, L., Zhang, Y., Zhao, Y., Liu, J., Wang, Z., & Liu, N. (2021). The advancement in flexible and wearable amperometric nonenzymatic glucose sensor for real-time health monitoring. Advanced Science, 8(3), 2003629. https://doi.org/10.1002/advs.202003629
[73]. Yu, Y., Cao, C., & Liu, Y. (2020). Smart polymers and their applications in biomedical applications. Advanced Healthcare Materials, 9(11), 1901258. https://doi.org/10.1002/adhm.201901258
[74]. Zeng, G., Shu, M., Wang, P., Jiang, J., Kong, R., Wang, L., Cremonese, A. G., & Wu, T. (2019). Wearable graphene oxide/gold nanoparticles hybrid composite glucose biosensor using wavelength-dependent LSPR technique. Biosensors & Bioelectronics, 123, 244–251.