OPEN-ACCESS PEER-REVIEWED

1Dr Abanibhusan Jena, 2Dr. Rudra Narayan Pati, 3Dr. Silky Mahajan, 4Dr Seema Yadav

1Associate Professor and Head of Department, Fakir Mohan Medical College and Hospital, Baleshwer, Odissa Affiliated to: National Medical Commission/ FM University 

2Assistant professor Department of Pharmacology Fakir Mohan Medical College, Balasore Fakir Mohan University Odisha

3Designation: Assistant Professor, Department of Pathology College, Punjab Institute of Medical Sciences (PIMS), Jalandhar, Punjab, BFUHS (University)

4Principal, College of Nursing. Sarojini Naidu Medical College, AGRA, UP. 

Download PDF

Abstract

Therapeutic Drug Monitoring (TDM) is a vital tool in clinical and forensic toxicology, assessing drug levels in biological samples to optimize therapy or investigate drug-related incidents. TDM, a field that combines clinical pharmacology and forensic toxicology, provides valuable insights into drug therapy management and forensic investigations. This paper studies the role of TDM in clinical conditions, focusing on its effectiveness in guiding dosage adjustments, ensuring therapeutic efficacy, and minimizing adverse effects. The study explores how TDM aids forensic investigations by providing valuable insights into drug-related fatalities, abuse, and compliance monitoring. This study observes current methodologies, challenges, and trends in TDM, emphasizing its crucial role in promoting patient safety, enhancing drug efficacy, and facilitating forensic analyses in toxicology practice. This review studies the role of TDM in clinical conditions, highlighting its potential benefits and limitations in optimizing drug therapy. The widespread adoption and effectiveness of drug metabolism testing are hindered by challenges like variability, assay limitations, and interpretational complexities. TDM is crucial in forensic toxicology for identifying drug-related fatalities, assessing drug abuse patterns, and verifying medication regimen compliance. Postmortem redistribution, analytical sensitivity, and drug concentration interpretation in non-traditional matrices necessitate cautious interpretation and integration with comprehensive forensic investigations. TDM faces challenges in clinical and forensic domains, requiring ongoing research, methodological advancements, and interdisciplinary collaboration to fully realize its potential in patient care and forensic analyses

Keywords: Therapeutic drug monitoring, Forensic toxicology, Analysis, Pharmacokinetics, Pharmacodynamics

References

[1]. Abernethy, D. R., Greenblatt, D. J., & Shader, R. I. (1985). Imipramine and desipramine disposition in the elderly. Journal of Pharmacology and Experimental Therapeutics, 232(1), 183-188.
[2]. Adityanjee, A. J., & Srivastava, A. S. (2006). Clinical pharmacokinetics of antipsychotics in children and adolescents: a critical review of the literature. Clinical Pharmacokinetics, 45(11), 1059-1084.
[3]. Aichhorn, W., Marksteiner, J., Walch, T., Zernig, G., & Saria, A. (2006). Pramipexole in treatment-resistant depression: a 16-week naturalistic study. European Neuropsychopharmacology, 16(6), 464-471.
[4]. Al Hadithy, A. F., Ivanova, S. A., Pechlivanoglou, P., Semke, A., Fedorenko, O., Kornetova, E., Ryadovaya, L., Brouwers, J. R., Wilffert, B., Bruggeman, R., & Loonen, A. J. (2009). Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Progress in neuro-psychopharmacology & biological psychiatry, 33(3), 475–481.
[5]. Al-Janabi, I., Arranz, M. J., Blakemore, A. I., Saiz, P. A., Susce, M. T., Glaser, P. E., Clark, D., & de Leon, J. (2009). Association study of serotonergic gene variants with antipsychotic-induced adverse reactions. Psychiatric genetics, 19(6), 305–311.
[6]. https://doi.org/10.1097/YPG.0b013e3283328dcd.
[7]. Ambach, L., Hernández Redondo, A., König, S., & Weinmann, W. (2014). Rapid and simple LC‐MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug testing and analysis, 6(4), 367-375.
[8]. Armijo, J. A., Cuadrado, A., Bravo, J., & Arteaga, R. (1997). Vigabatrin serum concentration to dosage ratio: influence of age and associated antiepileptic drugs. Therapeutic drug monitoring, 19(5), 491–498.
[9]. https://doi.org/10.1097/00007691-1997100 00-00001.
[10]. Aronson, J. K., & Ferner, R. E. (2016). The law of mass action and the pharmacological concentration–effect curve: resolving the paradox of apparently non‐dose‐related adverse drug reactions. British Journal of Clinical Pharmacology, 81(1), 56-61.
[11]. Åsberg, M., Crönholm, B., Sjöqvist, F., & Tuck, D. (1971). Relationship between plasma level and therapeutic effect of nortriptyline. British Medical Journal, 3(5770), 331-334.
[12]. Azad, A. K., Praveen, M., & Sulaiman, W. M. A. B. W. (2024). Assessment of Anticancer Properties of Plumbago zeylanica. Harnessing Medicinal Plants in Cancer Prevention and Treatment, 91–121.
[13]. https://doi.org/10.4018/979-8-3693-1646-7.ch004
[14]. Backman, J. T., Filppula, A. M., Niemi, M., & Neuvonen, P. J. (2016). Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacological Reviews, 68(1), 168-241.
[15]. Balant, L., Balant-Gorgia, A., Eisele, R., Gex-Fabry, M., & Garrone, G. (1989). Clinical and pharmacokinetic evaluation of zuclopenthixol acetate in Viscoleo®. Pharmacopsychiatry, 22(06), 250-254.
[16]. Baranczewski, P., Stanczak, A., Sundberg, K., Svensson, R., Wallin, Å., Jansson, J., & Edlund, P. O. (2006). Introduction to in vitro estimation of metabolic drug–drug interactions: basics and principles. Chemico-Biological Interactions, 164(1-2), 187-206.
[17]. Barcelo, B., Noce, V., & Gomila, I. (2018). Building bridges between clinical and forensic toxicology laboratories. Current Pharmaceutical Biotechnology, 19(2), 99-112.
[18]. Barr, J. T., Rodriguez-Cruz, V., Smith, C., & Muszynski, M. (2002). Pharmacokinetic considerations in psychiatric research. In H. M. Kranzler & D. W. Alderson (Eds.), Research methods in psychiatry (pp. 195-211). American Psychiatric Association Publishing.
[19]. Barski, O. A., Tipparaju, S. M., & Bhatnagar, A. (2008). The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metabolism Reviews, 40(4), 553-624.
[20]. Bauer, L. A. (2008). Applied clinical pharmacokinetics. McGraw-Hill Medical New York.
[21]. Baumann, P., Hiemke, C., Ulrich, S., Eckermann, G., Gaertner, I., Gerlach, M., Kuss, H. J., Laux, G., Müller-Oerlinghausen, B., Rao, M. L., Riederer, P., Zernig, G., & Arbeitsge-meinschaft fur neuropsychopharmakologie und pharmakopsychiatrie (2004). The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry, 37(6), 243–265. https://doi.org/10.1055/s-2004-832687
[22]. Baumann, P., Kirchherr, H., Berney, P., & Hiemke, C. (2012). Flupentixol: relevance of stereoselective therapeutic drug monitoring. Psychopharmacology, 221(4), 719-720.
[23]. Baumann, P., Zullino, D. F., & Eap, C. B. (2002). Enantiomers’ potential in psychopharmacology—a critical analysis with special emphasis on the antidepressant escitalopram. European Neuropsychopharmacology, 12(5), 433-444.
[24]. Beedham, C., Miceli, J. J., & Obach, R. S. (2003). Ziprasidone metabolism, aldehyde oxidase, and clinical implications. Journal of Clinical Psychopharmacology, 23(3), 229-232.
[25]. Benedetti, M. S., Whomsley, R., Baltes, E., Tonner, F., Muller, L., & Kleinermans, D. (2009). Drug metabolism and pharmacokinetics. Drug Metabolism Reviews, 41(3), 344-390.
[26]. Berm, E. J., Paardekooper, J., Brummel-Mulder, E., Hak, E., Wilffert, B., & Maring, J. G. (2015). A simple dried blood spot method for therapeutic drug monitoring of the tricyclic antidepressants amitriptyline, nortriptyline, imipramine, clomipramine, and their active metabolites using LC-MS/MS. Talanta, 134, 165-172.
[27]. Bertelsen, K. M., Venkatakrishnan, K., Von Moltke, L. L., Obach, R. S., & Greenblatt, D. J. (2003). Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine. Drug Metabolism and Disposition, 31(3), 289-293.
[28]. Biernacka, J., et al., (2015). The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response. Translational Psychiatry, 5(4), e553.
[29]. Bijlsma, L., Gil-Solsona, R., Hernández, F., & Sancho, J. V. (2018). What about the herb? A new metabolomics approach for synthetic cannabinoid drug testing. Analytical and bioanalytical chemistry, 410, 5107-5112.
[30]. Birkenhäger, T. K., Moleman, P., Boonstra, H., & Schene, A. H. (2006). Lack of evidence for the efficacy of antipsychotics in treatment-resistant depression: a meta-analysis. Journal of Clinical Psychopharmacology, 26(6), 650-654.
[31]. Blake, C. M., & Ridout, G. (2007). Antidepressants and cytochrome P450 2D6 (CYP2D6) inhibition: are there clinically relevant drug interactions? Canadian Journal of Psychiatry, 52(11), 780-788.
[32]. Breyer-Pfaff, U., & Nill, K. (2004). Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol. Journal of Pharmacy and Pharmacology, 56(12), 1601-1606.
[33]. Bruijn, J. A., Moleman, P., Mulder, P. G., van den Broek, W. W., van Hulst, A. M., van der Mast, R. C., & van de Wetering, B. J. (1996). A double-blind, fixed blood-level study comparing mirtazapine with imipramine in depressed in-patients. Psychopharmacology, 127(3), 231–237.
[34]. Burns, M. L., Baftiu, A., Opdal, M. S., Johannessen, S. I., & Landmark, C. J. (2016). Therapeutic Drug Monitoring of Clobazam and Its Metabolite-Impact of Age and Comedication on Pharmacokinetic Variability. Therapeutic drug monitoring, 38(3), 350–357. https://doi.org/10.1097/FTD.0000000000000272.
[35]. Buko, A. (2017). Capillary electrophoresis mass spectrometry based metabolomics. Journal of Applied Bioanalysis, 3(1), 5–20.
[36]. Bymaster, F. P., Calligaro, D. O., Falcone, J. F., Marsh, R. D., Moore, N. A., Tye, N. C., … & Wong, D. T. (1996). Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology, 14(2), 87-96.
[37]. Callaghan, J. T., Bergstrom, R. F., Ptak, L. R., & Beasley, C. M. (1999). Olanzapine: pharmacokinetic and pharmacodynamic profile. Clinical Pharmacokinetics, 37(3), 177-193.
[38]. Cannaert, A., Franz, F., Auwärter, V., & Stove, C. P. (2017). Activity-based detection of consumption of synthetic cannabinoids in authentic urine samples using a stable cannabinoid reporter system. Analytical chemistry, 89(17), 9527-9536.
[39]. Castberg, I., Skogvoll, E., & Spigset, O. (2007). Quetiapine and drug interactions: evidence from a routine therapeutic drug monitoring service. Journal of Clinical Psychiatry, 68(10), 1540-1545.
[40]. Chenu, F., Batten, L. A., Zernig, G., Ladstaetter, E., Hébert, C., & Blier, P. (2009). Comparison of pharmacokinetic profiles of brand-name and generic formulations of citalopram and venlafaxine: a crossover study. The Journal of clinical psychiatry, 70(7), 958–966. https://doi.org/10.4088/jcp.09m05315.
[41]. Chung, H., & Choe, S. (2017). Overview of forensic toxicology, yesterday, today and in the future. Current Pharmaceutical Design, 23(36), 5429-5436.
[42]. Clark, R. (2011). Therapeutic drug monitoring in psychiatric practice: clinical implications. Psychiatric Times, 28(3), 35-37.
[43]. Concheiro, M., Castaneto, M., Kronstrand, R., & Huestis, M. A. (2015). Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching. Journal of chromatography. A, 1397, 32–42.
[44]. Court, M. H. (2010). Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metabolism Reviews, 42(1), 209-224.
[45]. Dalsgaard, P. W., Rasmussen, B. S., Müller, I. B., & Linnet, K. (2012). Toxicological screening of basic drugs in whole blood using UPLC‐TOF‐MS. Drug Testing and Analysis, 4(5), 313-319.
[46]. Dasgupta, A. (2007). The effects of adulterants and selected ingested compounds on drugs-of-abuse testing in urine. American Journal of Clinical Pathology, 128(3), 491-503.
[47]. Dasgupta, A., Chughtai, O., Hannah, C., Davis, B., & Wells, A. (2004). Comparison of spot tests with AdultaCheck 6 and Intect 7 urine test strips for detecting the presence of adulterants in urine specimens. Clinica Chimica Acta, 348(1-2), 19-25.
[48]. Dawling, S. (1982). Monitoring of tricyclic antidepressant therapy. Clinical Biochemistry, 15(1), 56-61.
[49]. de Leon, J. (2003). The effect of atypical versus typical antipsychotics on tardive dyskinesia: a naturalistic study. European Archives of Psychiatry and Clinical Neuroscience, 253(2), 103-107.
[50]. de Leon, J. (2014). Evidence-based medicine versus personalized medicine: are they enemies? Journal of Clinical Psychopharmacology, 34(2), 153-160.
[51]. de Leon, J., Armstrong, S. C., Cozza, K. L., & Clinical Practice, L. O. S. A. (2006). The dosing of atypical antipsychotics. Psychosomatics, 47(3), 277-283.
[52]. de Leon, J., Spina, E., & Diaz, F. J. (2013). Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Therapeutic drug monitoring, 35(1), 30-47.
[53]. de Leon, J., Susce, M. T., & Murray-Carmichael, E. (2006). The AmpliChip CYP450 genotyping test: Integrating a new clinical tool into clinical practice. Molecular Diagnosis & Therapy, 10(3), 135-151.
[54]. Diaz, F. J., Santoro, V., Spina, E., Cogollo, M., Rivera, T. E., Botts, S., & de Leon, J. (2008). Estimating the size of the effects of co-medications on plasma clozapine concentrations using a model that controls for clozapine doses and confounding variables. Pharmacopsychiatry, 41(3), 81–91. https://doi.org/10.1055/s-2007-1004591.
[55]. Dinis-Oliveira, R. J. (2016). Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metabolism Reviews, 48(4), 568-576.
[56]. Domschke, K., Tidow, N., Schwarte, K., Deckert, J., Lesch, K. P., Arolt, V., Zwanzger, P., & Baune, B. T. (2014). Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. The international journal of neuropsychopharmacology, 17(8), 1167–1176.
[57]. https://doi.org/10.1017/S146114571400039X
[58]. Dost, F. (1953). Kinetik de Konzentrationsabläufe in der Kreislaufflüssigkeit. Leipzig: Thieme.
[59]. Dresser, G. K., Spence, J. D., & Bailey, D. G. (2000). Pharmacokinetic–pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clinical Pharmacokinetics, 38(1), 41-57.
[60]. Drummer, O. H. (2007). Requirements for bioanalytical procedures in postmortem toxicology. Analytical and bioanalytical chemistry, 388, 1495-1503.
[61]. Eap, C. B., Bender, S., & Baumann, P. (2000). Newer antidepressants: pharmacokinetics, therapeutic drug monitoring and pharmacogenetics. Therapeutic Drug Monitoring, 22(1), 137-143.
[62]. Eap, C. B., Buclin, T., & Baumann, P. (2002). Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clinical Pharmacokinetics, 41, 1153-1193.
[63]. Edwards, C., Fyfe, M. J., Liu, R. H., & Walia, A. (1993). Evaluation of common urine specimen adulteration indicators. Journal of analytical toxicology, 17(4), 251-252.
[64]. Egberts, K., Mehler-Wex, C., & Gerlach, M. (2011). Therapeutic drug monitoring in child and adolescent psychiatry. Pharmacopsychiatry, 21(06), 249-253.
[65]. Ellingrod, V. L., Perry, P. J., & Lauriello, J. (2003). Genetic polymorphisms and antipsychotic metabolism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 123B(1), 50-58.
[66]. Ereshefsky, L. (2009). Pharmacokinetics and drug interactions: update for new antipsychotics. Journal of Clinical Psychiatry, 70(4), 27-33.
[67]. European Monitoring Centre for Drugs and Drug Addiction. (2009). Understanding the “Spice” phenomenon.
[68]. Evans, W. E., & Relling, M. V. (1999). Pharmacogenomics: translating functional genomics into rational therapeutics. Science, 286(5439), 487-491.
[69]. Farde, L., Nordström, A. L., & Wiesel, F. A. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Archives of General Psychiatry, 49(7), 538-544.
[70]. Ferrell, P. B., & McLeod, H. L. (2008). Carbamazepine, HLA-B 1502 and risk of Stevens–Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations.
[71]. Flanagan, R. J. (2004). Developing an analytical toxicology service: principles and guidance. Toxicological reviews, 23, 251-263.
[72]. Fleischhacker, W. W., Meise, U., Gunther, V., Kurz, M., & Deix, K. (1994). Serum concentrations of clozapine and norclozapine in patients with schizophrenia on concomitant treatment. Journal of Clinical Psychopharmacology, 14(2), 128-132.
[73]. Flockhart, D. A., Oesterheld, J. R., & Gandolfi, A. J. (2000). Pharmacogenetic principles and clinical applications. Mayo Clinic Proceedings, 75(7), 747-754.
[74]. Fu, S., Luong, S., Pham, A., Charlton, N., & Kuzhiumparambil, U. (2014). Bioanalysis of urine samples after manipulation by oxidizing chemicals: technical considerations. Bioanalysis, 6(11), 1543-1561.
[75]. Garg, U., & Dasouki, M. (2006). Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clinical biochemistry, 39(4), 315-332.
[76]. Garg, U., & Zhang, Y. V. (2016). Mass spectrometry in clinical laboratory: applications in therapeutic drug monitoring and toxicology. In Clinical applications of mass spectrometry in drug analysis: methods and protocols (pp. 1-10).
[77]. George, R., Haywood, A., Khan, S., Radovanovic, M., Simmonds, J., & Norris, R. (2018). Enhancement and Suppression of Ionization in Drug Analysis Using HPLC-MS/MS in Support of Therapeutic Drug Monitoring: A Review of Current Knowledge of Its Minimization and Assessment. Therapeutic drug monitoring, 40(1), 1–8. https://doi.org/10.1097/FTD.0000000000000471
[78]. Gerlach, M., Egberts, K., Dang, S. Y., Plener, P., Taurines, R., Mehler-Wex, C., & Romanos, M. (2016). Therapeutic drug monitoring as a measure of proactive pharmacovigilance in child and adolescent psychiatry. Expert opinion on drug safety, 15(11), 1477–1482.
[79]. https://doi.org/10.1080/14740338.2016.1225721
[80]. Gervasini, G., Carrillo, J. A., & Benitez, J. (2004). Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds. Clinical Pharmacokinetics, 43, 693-706.
[81]. Gex-Fabry, M., Balant-Gorgia, A. E., & Balant, L. P. (2003). Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Therapeutic drug monitoring, 25(1), 46–53. https://doi.org/10.1097/00007691-200302000-00007
[82]. Ghosh, C., Marchi, N., Desai, N., Puvenna, V., Hossain, M., Gonzalez-Martinez, J., & Janigro, D. (2011). Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia, 52(3), 562-571.
[83]. Goggin, M. M., Tann, C. M., Miller, A., Nguyen, A., & Janis, G. C. (2017). Catching fakes: new markers of urine sample validity and invalidity. Journal of Analytical Toxicology, 41(2), 121-126.
[84]. González, M. M., Akamine, Y., & Shimosegawa, E. (2015). Considerations on the pharmacogenetics of psychiatric drugs. Drug Metabolism and Pharmacokinetics, 30(1), 1-9.
[85]. Gottardo, R., Fanigliulo, A., Bortolotti, F., De Paoli, G., Pascali, J. P., & Tagliaro, F. (2007). Broad-spectrum toxicological analysis of hair based on capillary zone electrophoresis–time-of-flight mass spectrometry. Journal of Chromatography A, 1159(1-2), 190-197.
[86]. Grabenauer, M., Krol, W. L., Wiley, J. L., & Thomas, B. F. (2012). Analysis of synthetic cannabinoids using high-resolution mass spectrometry and mass defect filtering: implications for nontargeted screening of designer drugs. Analytical chemistry, 84(13), 5574-5581.
[87]. Grapp, M., Maurer, H. H., & Desel, H. (2016). Systematic forensic toxicological analysis by GC‐MS in serum using automated mass spectral deconvolution and identification system. Drug testing and analysis, 8(8), 816-825.
[88]. Greenbaum, L., Smith, R. C., Rigbi, A., Strous, R., Teltsh, O., Kanyas, K., Korner, M., Lancet, D., Ben-Asher, E., & Lerer, B. (2009). Further evidence for association of the RGS2 gene with antipsychotic-induced parkinsonism: protective role of a functional polymorphism in the 3′-untranslated region. The pharmacogenomics journal, 9(2), 103–110. https://doi.org/10.1038/tpj.2008.6
[89]. Greenbaum, L., Strous, R. D., Kanyas, K., Merbl, Y., Horowitz, A., Karni, O., Katz, E., Kotler, M., Olender, T., Deshpande, S. N., Lancet, D., Ben-Asher, E., & Lerer, B. (2007). Association of the RGS2 gene with extrapyramidal symptoms induced by treatment with antipsychotic medication. Pharmacogenetics and genomics, 17(7), 519–528. https://doi.org/10.1097/FPC.0b013e32800ffbb4
[90]. Gressier, F., Porcelli, S., Calati, R., & Serretti, A. (2016). Pharmacogenetics of clozapine response and induced weight gain: A comprehensive review and meta-analysis. European Neuropsychopharmacology, 26(2), 163-185.
[91]. Gupta, S. K., Shah, J. C., & Hwang, S. S. (1999). Pharmacokinetic and pharmacodynamic characterization of OROS® and immediate‐release amitriptyline. British Journal of Clinical Pharmacology, 48(1), 71-78.
[92]. Haddad, P. M., & Sharma, S. G. (2007). Adverse effects of atypical antipsychotics: differential risk and clinical implications. CNS Drugs, 21(11), 911-936.
[93]. Haen, E. (2011). Therapeutic drug monitoring in pharmacovigilance and pharmacotherapy safety. Pharmacopsychiatry, 21(06), 254-258.
[94]. Haen, E., Greiner, C., Bader, W., & Wittmann, M. (2008). Expanding therapeutic reference ranges using dose-related reference ranges. Der Nervenarzt, 79, 558-566.
[95]. Hammett-Stabler, C. A., Pesce, A. J., & Cannon, D. J. (2002). Urine drug screening in the medical setting. Clinica chimica acta, 315(1-2), 125-135.
[96]. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.
[97]. Hefner, G., Laib, A. K., Sigurdsson, H., Hohner, M., & Hiemke, C. (2013). The value of drug and metabolite concentration in blood as a biomarker of psychopharmacological therapy. International review of psychiatry (Abingdon, England), 25(5), 494–508. https://doi.org/10.3109/09540261.2013.836475.
[98]. Hefner, G., Ludwig, R., Leweke, F. M., Mössner, R., & Rao, M. L. (2013). An update on therapeutic drug monitoring of antipsychotics in children and adolescents. European Neuropsychopharmacology, 23(10), 811-821.
[99]. Hefner, G., Mössner, R., Schimke, J., Schosser, A., Maier, W., Benninghoff, J., & Remschmidt, H. (2015). Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey. Journal of Neural Transmission, 122, 1609-1617.
[100]. Hegerl, U., Bottlender, R., Gallinat, J., Kuss, H.-J., Ackenheil, M., & Möller, H.-J. (1998). The serotonin syndrome scale: first results on validity. European Archives of Psychiatry and Clinical Neuroscience, 248, 96-103.
[101]. Hendershot, C. S. (2014). Pharmacogenetic approaches in the treatment of alcohol use disorders: addressing clinical utility and implementation thresholds. Addiction Science & Clinical Practice, 9, 1-8.
[102]. Hiemke, C., Baumann, P., Bergemann, N., Conca, A., Dietmaier, O., Egberts, K., Fric, M., Gerlach, M., Greiner, C., Gründer, G., Haen, E., Havemann-Reinecke, U., Jaquenoud Sirot, E., Kirchherr, H., Laux, G., Lutz, U. C., Messer, T., Müller, M. J., Pfuhlmann, B., Rambeck, B., … Zernig, G. (2011). AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry, 44(6), 195–235. https://doi.org/10.1055/s-0031-1286287
[103]. Hiemke, C., Bergemann, N., Clement, H. W., Conca, A., Deckert, J., Domschke, K., … & Zernig, G. (2018). Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry, 51(1-2), 9-62.
[104]. Ho, Y. P., & Reddy, P. M. (2011). Advances in mass spectrometry for the identification of pathogens. Mass spectrometry reviews, 30(6), 1203-1224.
[105]. Ingelman-Sundberg, M. (2004). Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends in Pharmacological Sciences, 25(4), 193-200.
[106]. Jaffee, W. B., Trucco, E., Levy, S., & Weiss, R. D. (2007). Is this urine really negative? A systematic review of tampering methods in urine drug screening and testing. Journal of Substance Abuse Treatment, 33(1), 33-42.
[107]. Jerling, M., Bertilsson, L., & Sjöqvist, F. (1994). The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Therapeutic drug monitoring, 16(1), 1-12.
[108]. Jimenez, C. R., & Verheul, H. M. (2014). Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. American Society of Clinical Oncology Educational Book, 34(1), e504-e510.
[109]. John, H., Willoh, S., Hörmann, P., Siegert, M., Vondran, A., & Thiermann, H. (2016). Procedures for analysis of dried plasma using microsampling devices to detect sulfur mustard-albumin adducts for verification of poisoning. Analytical chemistry, 88(17), 8787-8794.
[110]. Jones, P. M., & Bennett, M. J. (2002). The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clinica Chimica Acta, 324(1-2), 121-128.
[111]. K. Hiemke, C. J. G., Baumann, P., Eckermann, G., Ulrich, S., & S. Zernig, G. (2010). Therapeutic drug monitoring in neuropsychopharmacology: an update on clinical practice guidelines. European Neuropsychopharmacology, 20(9), 671-684.
[112]. K. Meltzer, H. Y. (2012). Mechanisms of action of antipsychotic drugs. In A. Breier, M. Olfson, & S. Greenstein (Eds.), Schizophrenia: New pharmacological approaches (pp. 77-88). Springer.
[113]. Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: a global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653-683.
[114]. Kalow, W. (2001). Pharmacogenetics: a historical perspective. Current Drug Metabolism, 2(1), 1-11.
[115]. Kane, J. M., Kishimoto, T., & Correll, C. U. (2013). Assessing the impact of patient adherence on clinical outcomes in schizophrenia. Schizophrenia Research, 159(1), 247-253.
[116]. Karastogianni, S., Deliyanni, E. A., & Girousi, S. (2017). Application of promising carbonaceous materials in electrochemical DNA sensing. Journal of Applied Bioanalysis, 3(4), 110–119.
[117]. Keck Jr, P. E., McElroy, S. L., Strakowski, S. M., West, S. A., Sax, K. W., Hawkins, J. M., & Bourne, M. L. (1998). 12-month outcome of patients with bipolar disorder following hospitalization for a manic or mixed episode. American Journal of Psychiatry, 155(5), 646-652.
[118]. Kennedy, M. (2010). Post‐mortem drug concentrations. Internal Medicine Journal, 40(3), 183-187.
[119]. Ketha, H., & Garg, U. (2020). An introduction to clinical and forensic toxicology. In Toxicology cases for the clinical and forensic laboratory (pp. 3-6). Elsevier.
[120]. Kirchheiner, J., & Seeringer, A. (2007). Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1770(3), 489-494.
[121]. Klengel, T., & Binder, E. B. (2013). Gene× environment interactions in the prediction of response to antidepressant treatment. International Journal of Neuropsychopharmacology, 16(3), 701-711.
[122]. Klotz, U. (2009). Pharmacokinetics and drug metabolism in the elderly. Drug Metabolism Reviews, 41(2), 67-76.
[123]. Kluge, J., Rentzsch, L., Remane, D., Peters, F. T., & Wissenbach, D. K. (2018). Systematic investigations of novel validity parameters in urine drug testing and prevalence of urine adulteration in a two‐year cohort. Drug testing and analysis, 10(10), 1536-1542.
[124]. Koelch, M., Pfalzer, A. K., Kliegl, K., Rothenhöfer, S., Ludolph, A. G., Fegert, J. M., Burger, R., Mehler-Wex, C., Stingl, J., Taurines, R., Egberts, K., & Gerlach, M. (2012). Therapeutic drug monitoring of children and adolescents treated with fluoxetine. Pharmacopsychiatry, 45(2), 72–76. https://doi.org/10.1055/s-0031-1291294.
[125]. Kolmonen, M., Leinonen, A., Pelander, A., & Ojanperä, I. (2007). A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry. Analytica Chimica Acta, 585(1), 94-102.
[126]. Kugelberg, F. C., Druid, H., Carlsson, B., Ahlner, J., & Bengtsson, F. (2004). Postmortem redistribution of the enantiomers of citalopram and its metabolites: an experimental study in rats. Journal of analytical toxicology, 28(8), 631–637. https://doi.org/10.1093/jat/28.8.631
[127]. Lagacé-Wiens, P. (2015). Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles. In Sepsis: Diagnostic Methods and Protocols (pp. 47-55). Springer.
[128]. Lam, Y. W. F., Banerjee, A., & McDonald, G. B. (2004). Pharmacokinetic and pharmacodynamic interactions of azole antifungal agents and cyclosporine. Clinical Pharmacokinetics, 43(10), 763-795.
[129]. Landmark, J. C., Svendsen, T., Dinarevic, J., Kufaas, R. F., Reimers, A., Brodtkorb, E., Baftiu, A., Burns, M. L., & Johannessen, S. I. (2016). The Impact of Pharmacokinetic Interactions With Eslicarbazepine Acetate Versus Oxcarbazepine and Carbamazepine in Clinical Practice. Therapeutic drug monitoring, 38(4), 499–505. https://doi.org/10.1097/FTD.0000000000000306Langman, L. J. (2007). The use of oral fluid for therapeutic drug management: clinical and forensic toxicology. Annals of the New York Academy of Sciences, 1098(1), 145-166.
[130]. Lerer, B., Segman, R. H., Tan, E. C., Basile, V. S., Cavallaro, R., Aschauer, H. N., Strous, R., Chong, S. A., Heresco-Levy, U., Verga, M., Scharfetter, J., Meltzer, H. Y., Kennedy, J. L., & Macciardi, F. (2005). Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. The international journal of neuropsychopharmacology, 8(3), 411–425. https://doi.org/10.1017/S1461145705005389.
[131]. Li, Y., Song, X., Zhao, X., Zou, L., & Xu, G. (2014). Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Chromatography B, 966, 147-153.
[132]. Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., & Hsiao, J. K. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New England Journal of Medicine, 353(12), 1209-1223.
[133]. Lin, J. H. (2006). Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metabolism and Disposition, 24(10), 1208-1212.
[134]. Llerena, A., Dorado, P., & Peñas-Lledó, E. M. (2014). Pharmacogenetics of CYP2D6 in the metabolism of antipsychotics: clinical implications. Pharmacogenomics, 15(8), 1073-1090.
[135]. Llerena, A., Edman, G., & Cobaleda, J. (1993). Pharmacogenetic aspects of drug metabolism in the elderly. Clinical Pharmacokinetics, 25(2), 99-121.
[136]. Lopez, L. V., & Kane, J. M. (2013). Plasma levels of second-generation antipsychotics and clinical response in acute psychosis: a review of the literature. Schizophrenia Research, 147(2-3), 368-374.
[137]. Luan, J., Yuan, J., Li, X., Jin, S., Yu, L., Liao, M., Zhang, H., Xu, C., He, Q., Wen, B., Zhong, X., Chen, X., Chan, H. L., Sung, J. J., Zhou, B., & Ding, C. (2009). Multiplex detection of 60 hepatitis B virus variants by maldi-tof mass spectrometry. Clinical chemistry, 55(8), 1503–1509.
[138]. Mardal, M., Gracia‐Lor, E., Leibnitz, S., Castiglioni, S., & Meyer, M. R. (2016). Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212‐2 studied using in vitro tools and LC‐HR‐MS/MS. Drug Testing and Analysis, 8(10), 1039-1048.
[139]. Mas, S., Gassó, P., Ritter, M., Malagelada, C., Bernardo, M., & Lafuente, A. (2015). Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: multilocus interaction in the mTOR pathway. European Neuropsychopharmacology, 25(1), 51-59.
[140]. Matriciani, B., Huppertz, B., Keller, R., & Weiskirchen, R. (2018). False-negative results in the immunoassay analysis of drugs of abuse: Can adulterants be detected by sample check test? Annals of Clinical Biochemistry, 55(3), 348-354.
[141]. Maurer, H. (2017). Maurer/Wissenbach/Weber MWW LC‐MSn Library of Drugs, Poisons, and Their Metabolites, 2nd rev. Weinheim, Germany: Wiley‐VCH.
[142]. Maurer, H. H. (2007). Current role of liquid chromatography–mass spectrometry in clinical and forensic toxicology. Analytical and bioanalytical chemistry, 388, 1315-1325.
[143]. Maurer, H. H. (2010). Analytical toxicology. In Molecular, Clinical and Environmental Toxicology: Volume 2: Clinical Toxicology (pp. 317-338).
[144]. Maurer, H. H. (2018). Mass spectrometry for research and application in therapeutic drug monitoring or clinical and forensic toxicology. Therapeutic Drug Monitoring, 40(4), 389-393.
[145]. Maurer, H. H., Pfleger, K., & Weber, A. A. (2007). Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites, 4th revision. Wiley-VCH, Weinheim.
[146]. Maurer, H., & Meyer, M. R. (2014). Methods for urine drug testing using one-step dilution and direct injection in combination with LC–MS/MS and LC–HRMS. Bioanalysis, 6(17), 2229-2244.
[147]. Maurer, H., & Meyer, M. R. (2016). High-resolution mass spectrometry in toxicology: current status and future perspectives. Archives of toxicology, 90, 2161-2172.
[148]. Mbughuni, M. M., Jannetto, P. J., & Langman, L. J. (2016). Mass spectrometry applications for toxicology. Ejifcc, 27(4), 272.
[149]. McElroy, S. L., Keck Jr, P. E., Strakowski, S. M., & Bourne, M. L. (1997). Clinical and research implications of the diagnosis of dysphoric or mixed mania or hypomania. American Journal of Psychiatry, 154(11), 1633-1644.
[150]. Meijer, D. K. F., & Smit, J. W. (2000). The influence of transporters in pharmacokinetic processes. European Journal of Pharmaceutical Sciences, 12(4), 273-293.
[151]. Menke, A., Klengel, T., & Binder, E. B. (2012). Epigenetics, depression and antidepressant treatment. Current Pharmaceutical Design, 18(36), 5879-5889.
[152]. Meyer, J. M., & Stahl, S. M. (2009). The metabolic syndrome and schizophrenia. Acta Psychiatrica Scandinavica, 119(4), 289-310.
[153]. Meyer, M. R. (2016). New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Archives of toxicology, 90, 2421-2444.
[154]. Meyer, M. R., & Maurer, H. H. (2012). Current applications of high-resolution mass spectrometry in drug metabolism studies. Analytical and bioanalytical chemistry, 403, 1221-1231.
[155]. Meyer, M. R., & Maurer, H. H. (2016). LC coupled to low-and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices–where do we stand today? Analytica chimica acta, 927, 13-20.
[156]. Meyer, M. R., Peters, F. T., & Maurer, H. H. (2010). Automated mass spectral deconvolution and identification system for GC-MS screening for drugs, poisons, and metabolites in urine. Clinical chemistry, 56(4), 575-584.
[157]. Meyer, M. R., Wagmann, L., Schneider-Daum, N., Loretz, B., de Souza Carvalho, C., Lehr, C. M., & Maurer, H. H. (2015). P-glycoprotein interactions of novel psychoactive substances – stimulation of ATP consumption and transport across Caco-2 monolayers. Biochemical pharmacology, 94(3), 220–226. https://doi.org/10.1016/j.bcp.2015.01.008
[158]. Meyer, R., Gehlhaus, M., Knoth, R., & Volk, B. (2007). Expression and function of cytochrome p450 in brain drug metabolism. Current Drug Metabolism, 8(4), 297-306.
[159]. Michely, J. A., Meyer, M. R., & Maurer, H. H. (2017). Dried urine spots-A novel sampling technique for comprehensive LC-MSn drug screening. Analytica chimica acta, 982, 112-121.
[160]. Michely, J. A., Meyer, M. R., & Maurer, H. H. (2017). Paper spray ionization coupled to high resolution tandem mass spectrometry for comprehensive urine drug testing in comparison to liquid chromatography-coupled techniques after urine precipitation or dried urine spot workup. Analytical chemistry, 89(21), 11779-11786.
[161]. Mills, S., & Lee, D. Y. W. (2017). Pharmacokinetic interactions between conventional medications and herbal medicines. Expert Opinion on Drug Metabolism & Toxicology, 13(3), 317-334.
[162]. Milosheska, D., Grabnar, I., & Vovk, T. (2014). Dried blood spots for monitoring and individualized dosing of antiepileptic drugs. European Journal of Pharmaceutical Sciences, 59, 20-27.
[163]. Mössner, R., Schuhmacher, A., Kühn, K. U., Cvetanovska, G., Rujescu, D., Zill, P., Quednow, B. B., Rietschel, M., Wölwer, W., Gaebel, W., Wagner, M., & Maier, W. (2009). Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenetics and genomics, 19(1), 91–94. https://doi.org/10.1097/FPC.0b013e328311a917.
[164]. Müller, M. J., Regenbogen, B., Härtter, S., Eich, F. X., & Hiemke, C. (2007). Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia. Journal of Psychiatric Research, 41(8), 673-679.
[165]. Murray, M. (2006). Role of CYP pharmacogenetics and drug–drug interactions in the efficacy and safety of atypical and other antipsychotic agents. Journal of Pharmacy and Pharmacology, 58(7), 871-885.
[166]. Neef, C., Touw, D. J., & Stolk, L. M. (2008). Therapeutic drug monitoring in clinical research. Pharmaceutical Medicine, 22, 235-244.
[167]. Nielen, M. W., Vissers, J. P., Fuchs, R. E., v. Velde, J. W., & Lommen, A. (2001). Screening for anabolic steroids and related compounds in illegal cocktails by liquid chromatography /time‐of‐flight mass spectrometry and liquid chromatography /quadrupole time‐of‐flight tandem mass spectrometry with accurate mass measurement. Rapid Communications in Mass Spectrometry, 15(17), 1577-1585.
[168]. Oda, S., Fukami, T., Yokoi, T., & Nakajima, M. (2015). A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metabolism and Pharmacokinetics, 30(1), 30-51.
[169]. O’Dushlaine, C., Ripke, S., Ruderfer, D. M., Hamilton, S. P., Fava, M., Iosifescu, D. V., Kohane, I. S., Churchill, S. E., Castro, V. M., Clements, C. C., Blumenthal, S. R., Murphy, S. N., Smoller, J. W., & Perlis, R. H. (2014). Rare copy number variation in treatment-resistant major depressive disorder. Biological psychiatry, 76(7), 536–541.
[170]. https://doi.org/10.1016/j.biopsych.2013.10.028.
[171]. Pagotto, U., Fanelli, F., & Pasquali, R. (2013). Insights into tandem mass spectrometry for the laboratory endocrinology. Reviews in Endocrine and Metabolic Disorders, 14, 141-141.
[172]. Pan, Y., & Nicolazzo, J. A. (2018). Impact of aging, Alzheimer’s disease, and Parkinson’s disease on the blood–brain barrier transport of therapeutics. Advanced Drug Delivery Reviews, 135, 62-74.
[173]. Panderi, I., Perez, K., Cao, L., Noble, L., Lombardo, K., Walsh, T. J., & Pantazatos, D. (2017). Assessment of molecular differentiation in FFPE colon adenocarcinoma tissues using PCA analysis of MALDI IMS spectral data. Journal of Applied Bioanalysis, 3(4), 81–97.
[174]. Pasin, D., Cawley, A., Bidny, S., & Fu, S. (2017). Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Analytical and bioanalytical chemistry, 409(25), 5821–5836.
[175]. https://doi.org/10.1007/s00216-017-0441-4.
[176]. Patsalos, P. N., Berry, D. J., Bourgeois, B. F., Cloyd, J. C., Glauser, T. A., Johannessen, S. I., Leppik, I. E., Tomson, T., & Perucca, E. (2008). Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia, 49(7), 1239–1276.
[177]. https://doi.org/10.1111/j.1528-1167.2008. 01561.x
[178]. Patteet, L., Maudens, K. E., Stove, C. P., Lambert, W. E., Morrens, M., Sabbe, B., & Neels, H. (2015). The use of dried blood spots for quantification of 15 antipsychotics and 7 metabolites with ultra-high performance liquid chromatography – tandem mass spectrometry. Drug testing and analysis, 7(6), 502–511. https://doi.org/10.1002/dta.1698.
[179]. Paul, B. D., Martin, K. K., Maguilo Jr, J., & Smith, M. L. (2000). Effects of pyridinium chlorochromate adulterant (urine luck) on testing for drugs of abuse and a method for quantitative detection of chromium (VI) in urine. Journal of analytical toxicology, 24(4), 233-237.
[180]. Paulzen, M., Eap, C.-B., Gründer, G., & Kuzin, M. (2016). Pharmacokinetic interaction between valproic acid, meropenem, and risperidone. Journal of Clinical Psychopharmacology, 36(4), 405-406.
[181]. Peace, M. R., & Tarnai, L. D. (2002). Performance evaluation of three on-site adulterant detection devices for urine specimens. Journal of analytical toxicology, 26(7), 464-470.
[182]. Pelander, A., Ojanperä, I., Laks, S., Rasanen, I., & Vuori, E. (2003). Toxicological screening with formula-based metabolite identification by liquid chromatography/time-of-flight mass spectrometry. Analytical chemistry, 75(21), 5710-5718.
[183]. Pelander, A., Ristimaa, J., & Ojanperä, I. (2010). Vitreous humor as an alternative matrix for comprehensive drug screening in postmortem toxicology by liquid chromatography-time-of-flight mass spectrometry. Journal of Analytical Toxicology, 34(6), 312-318.
[184]. Pelander, A., Ristimaa, J., Rasanen, I., Vuori, E., & Ojanperä, I. (2008). Screening for basic drugs in hair of drug addicts by liquid chromatography/time-of-flight mass spectrometry. Therapeutic drug monitoring, 30(6), 717-724.
[185]. Pérez, V., Gilaberte, I., Fañanás, L., & Portella, M. J. (2000). Predictors of response to antipsychotic treatment in schizophrenia. Journal of Clinical Psychopharmacology, 20(6), 643-649.
[186]. Perry, P. (2001). Therapeutic drug monitoring of antipsychotics. Psychopharmacology Bulletin, 35(3), 19-29.
[187]. Perry, P. J., Sanger, T., & Beasley, C. (1997). Olanzapine plasma concentrations and clinical response in acutely ill schizophrenic patients. Journal of Clinical Psychopharmacology, 17(6), 472-477.
[188]. Perry, P. J., Zeilmann, C., & Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. Journal of Clinical Psychopharmacology, 14(4), 230-240.
[189]. Peters, F. T. (2007). Stability of analytes in biosamples—an important issue in clinical and forensic toxicology? Analytical and Bioanalytical Chemistry, 388, 1505-1519.
[190]. Peters, F. T. (2011). Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology. Clinical Biochemistry, 44(1), 54-65.
[191]. Petrocheilou, M., Samanidou, V., Kovatsi, L., Tsolaki, M., & Papadoyannis, I. (2017). A simple and direct HPLC-DAD method for the simultaneous determination of galantamine, donepezil and rivastigmine in cerebrospinal fluid, blood serum and urine. Journal of Applied Bioanalysis, 3(4), 59–69. https://doi.org/10.17145/jab.17.010
[192]. Phan, H. M., Yoshizuka, K., Murry, D. J., & Perry, P. J. (2012). Drug testing in the workplace. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 32(7), 649-656.
[193]. Pirmohamed, M., & Park, B. K. (2003). Genetic susceptibility to adverse drug reactions. Trends in Pharmacological Sciences, 24(7), 385-391.
[194]. Pohjola-Sintonen, S., Kivistö, K. T., Vuori, E., Lapatto-Reiniluoto, O., Tiula, E., & Neuvonen, P. J. (2000). Identification of drugs ingested in acute poisoning: correlation of patient history with drug analyses. Therapeutic drug monitoring, 22(6), 749-752.
[195]. Pounder, D. J., & Jones, G. R. (1990). Post-mortem drug redistribution—a toxicological nightmare. Forensic science international, 45(3), 253-263.
[196]. Praveen, M., Ullah, I., Buendia, R., Khan, I. A., Sayed, M. G., Kabir, R., Bhat, M. A., Yaseen, M. (2024). Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals (Basel). 17(1):134. doi: 10.3390/ph17010134.
[197]. Praveen, M. (2024). Characterizing the West Nile Virus’s polyprotein from nucleotide sequence to protein structure – Computational tools. J Taibah Univ Med Sci. 19(2):338-350. doi: 10.1016/j.jtumed.2024.01.001.
[198]. Praveen, M. (2024). Multi-epitope-based vaccine designing against Junín virus glycoprotein: immunoinformatics approach. Futur J Pharm Sci 10, 29.
[199]. https://doi.org/10.1186/s43094-024-00602-8
[200]. Praveen, M., Morales-Bayuelo, A. (2023). Drug Designing against VP4, VP7 and NSP4 of Rotavirus Proteins – Insilico studies, Mor. J. Chem., 14(6), 729-741.
[201]. Preskorn, S. H. (2014). Therapeutic Drug Monitoring (TDM) in psychiatry (part I): why studies attempting to correlate drug concentration and antidepressant response don’t work. Journal of Psychiatric Practice®, 20(2), 133-137.
[202]. Preskorn, S. H., Burke, M. J., Fast, G. A., & Ciardullo, T. (1992). Therapeutic drug monitoring: principles and practice. Psychiatric Clinics of North America, 15(1), 153-175.
[203]. Preskorn, S. H., Flockhart, D., Tamminga, C., Mcdougle, C. J., Guengerich, F. P., Cohen, L., & Guideline, S. F. (2006). Antipsychotic drug–drug interactions: an evidence-based review. Journal of Clinical Psychiatry, 67(Suppl 7), 1-47.
[204]. Proft, F., Kopf, J., Olmes, D., Hempel, S., Schmidt, B., Riederer, P., Deckert, J., Pfuhlmann, B., Reif, A., & Unterecker, S. (2014). SLC6A2 and SLC6A4 variants interact with venlafaxine serum concentrations to influence therapy outcome. Pharmacopsychiatry, 47(7), 245–250. https://doi.org/10.1055/s-0034-1390412.
[205]. Rajkumar, A. P., Christensen, J. H., Nickelsen, M., & Sørensen, T. (2013). Antipsychotic dose conversion between oral and long-acting injectable formulations using a three-compartment model. Journal of Clinical Psychopharmacology, 33(3), 318-321.
[206]. Rao, V. R., Bishop, M., & Coppen, A. (1980). Clinical state, plasma levels of haloperidol and prolactin: a correlation study in chronic schizophrenia. The British Journal of Psychiatry, 137(6), 518-521.
[207]. Rawls, S. M., & Benamar, K. (2011). Dual norepinephrine reuptake inhibition and serotonin receptor blockade for the treatment of mood disorders: therapeutic rationale and efficacy of mirtazapine. Pharmacology & Therapeutics, 129(3), 287-294.
[208]. Reis, M., et al., (2007). Reference concentrations of antidepressants. A compilation of postmortem and therapeutic levels. Journal of Analytical Toxicology, 31(5), 254-264.
[209]. Remane, D., Meyer, M. R., Wissenbach, D. K., & Maurer, H. H. (2010). Ion suppression and enhancement effects of co‐eluting analytes in multi‐analyte approaches: systematic investigation using ultra‐high‐performance liquid chromatography/mass spectrometry with atmospheric‐pressure chemical ionization or electrospray ionization. Rapid Communications in Mass Spectrometry, 24(21), 3103-3108.
[210]. Remane, D., Wissenbach, D. K., Meyer, M. R., & Maurer, H. H. (2010). Systematic investigation of ion suppression and enhancement effects of fourteen stable‐isotope‐labeled internal standards by their native analogues using atmospheric‐pressure chemical ionization and electrospray ionization and the relevance for multi‐analyte liquid chromatographic/mass spectrometric procedures. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 24(7), 859-867.
[211]. Richter, L. H., Flockerzi, V., Maurer, H. H., & Meyer, M. R. (2017). Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples. Journal of Pharmaceutical and Biomedical Analysis, 143, 32-42.
[212]. Richter, L. H., Maurer, H. H., & Meyer, M. R. (2017). New psychoactive substances: studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-α-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicology Letters, 280, 142-150.
[213]. Rochat, B., Kosel, M., Boss, G., Testa, B., Gillet, M., & Baumann, P. (1998). Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochemical Pharmacology, 56(1), 15-23.
[214]. Roemmelt, A. T., Steuer, A. E., & Kraemer, T. (2015). Liquid chromatography, in combination with a quadrupole time-of-flight instrument, with sequential window acquisition of all theoretical fragment-ion spectra acquisition: validated quantification of 39 antidepressants in whole blood as part of a simultaneous screening and quantification procedure. Analytical chemistry, 87(18), 9294-9301.
[215]. Roerig, J. L., Steffen, K. J., & Mitchell, J. E. (2011). Atypical antipsychotic-induced weight gain: insights into mechanisms of action and implications for clinical management. Prostaglandins, Leukotrienes and Essential Fatty Acids, 85(2), 149-156.
[216]. Schoretsanitis, G., Haen, E., Gründer, G., Stegmann, B., Schruers, K. R., Hiemke, C., Lammertz, S. E., & Paulzen, M. (2016). Pharmacokinetic Drug-Drug Interactions of Mood Stabilizers and Risperidone in Patients Under Combined Treatment. Journal of clinical psychopharmacology, 36(6), 554–561. https://doi.org/10.1097/JCP.0000000000000601.
[217]. Schoretsanitis, G., Haen, E., Stegmann, B., Hiemke, C., Gründer, G., & Paulzen, M. (2017). Effect of smoking on risperidone pharmacokinetics – A multifactorial approach to better predict the influence on drug metabolism. Schizophrenia research, 185, 51–57. https://doi.org/10.1016/j.schres.2016.12.016.
[218]. Schoretsanitis, G., Kane, J. M., & Citrome, L. (2018). Personalized treatment of schizophrenia and the role of pharmacogenetics. The World Journal of Biological Psychiatry, 19(1), 3-11.
[219]. Schoretsanitis, G., Kane, J. M., Citrome, L., Halkin, A., Olfson, M., Newcomer, J. W., … & Ruschena, R. (2020). Personalized treatment of schizophrenia and the role of pharmacogenetics. The World Journal of Biological Psychiatry, 21(9), 690-703.
[220]. Segman, R. H., Heresco-Levy, U., Finkel, B., Goltser, T., Shalem, R., Schlafman, M., Dorevitch, A., Yakir, A., Greenberg, D., Lerner, A., & Lerer, B. (2001). Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Molecular psychiatry, 6(2), 225–229. https://doi.org/10.1038/sj.mp.4000842
[221]. Segman, R. H., Heresco-Levy, U., Finkel, B., Inbar, R., Neeman, T., Schlafman, M., Dorevitch, A., Yakir, A., Lerner, A., Goltser, T., Shelevoy, A., & Lerer, B. (2000). Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology, 152(4), 408–413. https://doi.org/10.1007/s002130000521.
[222]. Shah, R. R. (2006). Drug-induced QT interval prolongation—regulatory guidance and perspectives on hERG channel studies. Novartis Foundation Symposium, 277, 251-280.
[223]. Shanks, K. G., Dahn, T., Behonick, G., & Terrell, A. (2012). Analysis of first and second generation legal highs for synthetic cannabinoids and synthetic stimulants by ultra-performance liquid chromatography and time of flight mass spectrometry. Journal of analytical toxicology, 36(6), 360-371.
[224]. Sica, D. A. (2005). Drug interactions with olanzapine. Expert Opinion on Drug Metabolism & Toxicology, 1(2), 323-334.
[225]. Smith, S. W. (2009). Chiral toxicology: it’s the same thing only different. Toxicological Sciences, 110(1), 4-30.
[226]. Soldin, S. J., & Soldin, O. P. (2009). Steroid hormone analysis by tandem mass spectrometry. Clinical chemistry, 55(6), 1061-1066.
[227]. Sparshatt, A., Taylor, D., Patel, M. X., & Kapur, S. (2010). A systematic review of aripiprazole—dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. The Journal of Clinical Psychiatry, 71(11), 20680.
[228]. Spina, E., & de Leon, J. (2014). Metabolic drug interactions with newer antipsychotics: a comparative review. Basic & Clinical Pharmacology & Toxicology, 114(3), 396-412.
[229]. Stead, A., & Moffat, A. (1983). A collection of therapeutic, toxic and fatal blood drug concentrations in man. Human Toxicology, 2(3), 437-464.
[230]. Stieffenhofer, V., Saglam, H., Schmidtmann, I., Silver, H., Hiemke, C., & Konrad, A. (2011). Clozapine plasma level monitoring for prediction of rehospitalization schizophrenic outpatients. Pharmacopsychiatry, 44(2), 55–59. https://doi.org/10.1055/s-0030-1267178.
[231]. Stove, C. P., Ingels, A.-S. M., De Kesel, P. M., & Lambert, W. E. (2012). Dried blood spots in toxicology: from the cradle to the grave? Critical reviews in toxicology, 42(3), 230-243.
[232]. Takekita, Y., Fabbri, C., Kato, M., Koshikawa, Y., Tajika, A., Kinoshita, T., & Serretti, A. (2016). HTR1A Polymorphisms and Clinical Efficacy of Antipsychotic Drug Treatment in Schizophrenia: A Meta-Analysis. The international journal of neuropsychopharmacology, 19(5), pyv125. https://doi.org/10.1093/ijnp/pyv125
[233]. Taurines, R., Burger, R., Wewetzer, C., Pfuhlmann, B., Mehler-Wex, C., Gerlach, M., & Egberts, K. (2013). The relation between dosage, serum concentrations, and clinical outcome in children and adolescents treated with sertraline: a naturalistic study. Therapeutic drug monitoring, 35(1), 84–91. https://doi.org/10.1097/FTD.0b013e31827a1aad
[234]. Tenore, P. L. (2010). Advanced urine toxicology testing. Journal of addictive diseases, 29(4), 436-448.
[235]. Thorn, C. F., & Klein, T. E. (2011). Altman RB Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics, 12(8), 1053-1056.
[236]. Thummel, K. E., & Wilkinson, G. R. (1998). In vitro and in vivo drug interactions involving human CYP3A. Annual Review of Pharmacology and Toxicology, 38, 389-430.
[237]. Uebel, R. A., & Wium, C. A. (2002). Toxicological screening for drugs of abuse in samples adulterated with household chemicals. South African Medical Journal-Cape Town-Medical Association Of South Africa-, 92(7; PART 1), 547-548.
[238]. Ulrich, S., & Läuter, J. (2002). Comprehensive survey of the relationship between serum concentration and therapeutic effect of amitriptyline in depression. Clinical Pharmacokinetics, 41, 853-876.
[239]. Ulrich, S., Wurthmann, C., Brosz, M., & Meyer, F. P. (1998). The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clinical Pharmacokinetics, 34, 227-263.
[240]. United Nations Office on Drugs and Crime. (2018). Early warning advisory on new psychoactive substances.
[241]. Unterecker, S., et al., (2015). Increase of heart rate and QTc by amitriptyline, but not by venlafaxine, is correlated to serum concentration. Journal of Clinical Psychopharmacology, 35 (4), 460-463.
[242]. Urban, J. D., Benvenga, M. J., & Dillon, M. (2010). Drug–drug interactions involving p-glycoprotein substrates: therapeutic implications. Current Drug Metabolism, 11(8), 685-693.
[243]. Valtier, S., & Cody, J. T. (2002). A Procedure for the Detection of Stealth™ Adulterant in Urine Samples. Clinical Laboratory Science, 15(2), 111-115.
[244]. VanderZwaag, C., McGee, M., McEvoy, J. P., Freudenreich, O., Wilson, W. H., & Cooper, T. B. (1996). Response of patients with treatment-refractory schizophrenia to clozapine within three serum level ranges. The American Journal of Psychiatry, 153 (12), 1579-1584.
[245]. Verplaetse, R., & Henion, J. (2016). Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on‐line SPE‐LC‐MS/MS. Drug testing and analysis, 8(1), 30-38.
[246]. Verstraete, A. G. (2004). Detection times of drugs of abuse in blood, urine, and oral fluid. Therapeutic drug monitoring, 26(2), 200-205.
[247]. Virus, E., Sobolevsky, T., & Rodchenkov, G. (2008). Introduction of HPLC/orbitrap mass spectrometry as screening method for doping control. Journal of mass spectrometry, 43(7), 949-957.
[248]. Vogeser, M., & Parhofer, K. (2007). Liquid chromatography tandem-mass spectrometry (LC-MS/MS)-technique and applications in endocrinology. Experimental and clinical endocrinology & diabetes, 115(09), 559-570.
[249]. von Mach, M.-A., Weber, C., Meyer, M. R., Weilemann, L. S., Maurer, H. H., & Peters, F. T. (2007). Comparison of urinary on-site immunoassay screening and gas chromatography-mass spectrometry results of 111 patients with suspected poisoning presenting at an emergency department. Therapeutic drug monitoring, 29(1), 27-39.
[250]. Vuori, E., & Ojanperä, I. (2009). Forensic applications of toxicology. In Wiley encyclopedia of forensic science-Wiley-Blackwel, 2009 (pp. 2503-2509).
[251]. Waldschmitt, C., Vogel, F., Pfuhlmann, B., & Hiemke, C. (2009). Duloxetine serum concentrations and clinical effects. Data from a therapeutic drug monitoring (TDM) survey. Pharmacopsychiatry, 42 (05), 189-193.
[252]. Whiteaker, J. R. (2010). The increasing role of mass spectrometry in quantitative clinical proteomics. Oxford University Press, 56, 1373-1374.
[253]. Williams, J. A., Hyland, R., Jones, B. C., Smith, D. A., Hurst, S., Goosen, T. C., & Ball, S. E. (2004). Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCI/AUC) ratios. Drug Metabolism and Disposition, 32(11), 1201-1208.
[254]. Williamson, B., & Aaronson, S. (2016). Medication adherence in schizophrenia: the role of cognitive functioning and insight. Journal of Clinical Psychopharmacology, 36(4), 380-382.
[255]. Wissenbach, D. K., Meyer, M. R., Remane, D., Philipp, A. A., Weber, A. A., & Maurer, H. H. (2011). Drugs of abuse screening in urine as part of a metabolite-based LC-MSn screening concept. Analytical and bioanalytical chemistry, 400(10), 3481–3489.
[256]. https://doi.org/10.1007/s00216-011-5032-1.
[257]. Wissenbach, D. K., Meyer, M. R., Remane, D., Weber, A. A., & Maurer, H. H. (2011). Development of the first metabolite-based LC-MS(n) urine drug screening procedure-exemplified for antidepressants. Analytical and bioanalytical chemistry, 400(1), 79–88. https://doi.org/10.1007/s00216-010-4398-9.
[258]. Wissenbach, D. K., Meyer, M. R., Weber, A. A., Remane, D., Ewald, A. H., Peters, F. T., & Maurer, H. H. (2012). Towards a universal LC-MS screening procedure – can an LIT LC-MS(n) screening approach and reference library be used on a quadrupole-LIT hybrid instrument?. Journal of mass spectrometry : JMS, 47(1), 66–71. https://doi.org/10.1002/jms.2027.
[259]. Wohkittel, C., Gerlach, M., Taurines, R., Wewetzer, C., Unterecker, S., Burger, R., Schreck, D., Mehler-Wex, C., Romanos, M., & Egberts, K. (2016). Relationship between clozapine dose, serum concentration, and clinical outcome in children and adolescents in clinical practice. Journal of neural transmission (Vienna, Austria : 1996), 123(8), 1021–1031. https://doi.org/10.1007/s00702-016-1573-y
[260]. Wu, A. H., Bristol, B., Sexton, K., Cassella-McLane, G., Holtman, V., & Hill, D. W. (1999). Adulteration of urine by “Urine Luck”. Clinical Chemistry, 45(7), 1051-1057.
[261]. Wu, M.-K., Chung, W., Wu, C.-K., & Tseng, P.-T. (2015). The severe complication of Stevens–Johnson syndrome induced by long-term clozapine treatment in a male schizophrenia patient: a case report. Neuropsychiatric Disease and Treatment, 11, 1039-1041.
[262]. Xu, X. (2016). In vivo characterization of therapeutic monoclonal antibodies. Journal of Applied Bioanalysis, 2(1), 10–15.
[263]. Wyman, J. F. (2012). Principles and procedures in forensic toxicology. Clinics in laboratory medicine, 32(3), 493-507.
[264]. Yáñez, J. A., Remsberg, C. M., Sayre, C. L., Forrest, M. L., & Davies, N. M. (2011). Flip-flop pharmacokinetics—delivering a reversal of disposition: challenges and opportunities during drug development. Therapeutic Delivery, 2(5), 643-672.
[265]. Yasui-Furukori, N., et al., (2010). Clinical response to risperidone in relation to plasma drug concentrations in acutely exacerbated schizophrenic patients. Journal of Psychopharmacology, 24 (7), 987-994.
[266]. Yin, O. Q., et al., (2006). Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. Journal of clinical psychopharmacology, 26(4), 367-372.
[267]. Yuan, C., Chen, D., & Wang, S. (2015). Drug confirmation by mass spectrometry: Identification criteria and complicating factors. Clinica Chimica Acta, 438, 119-125.
[268]. Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103-141.
[269]. Zhou, S.-F. (2009). Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clinical Pharmacokinetics, 48, 761-804.
[270]. Zhou, S.-F., Liu, J.-P., & Chowbay, B. (2009). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metabolism Reviews, 41(2), 89-295.