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INTRODUCTION
Cefepime is a 4th-generation cephalosporin with activity against a range of facul-
tative Gram-positive and Gram-negative bacteria [1]. Due to its broad spectrum of 
activity, it is frequently used as empiric antibiotic coverage in patients suspected 
to have serious bacterial infections, such as critically ill and immunocompromised 
patients. It is also administered as definitive treatment for infections caused by 
Gram-negative bacilli resistant to narrower spectrum antibiotic agents, including 
Enterobacteriaceae that produce AmpC β-lactamases [2] and many strains of Pseu-
domonas aeruginosa [3]. As a result, cefepime has become an important antimicro-
bial agent in the treatment of serious community- and hospital-acquired bacterial 
infections. The pharmacokinetics (PK) of cefepime have been well-characterized. 
It is renally eliminated with greater than 80% of doses excreted unchanged in the 
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urine [4], and roughly 16% of total serum concentrations are bound to plasma proteins 
[5]. Cefepime displays linear pharmacokinetics over a range of doses [4, 6]. In patients 
with normal renal function, cefepime has an elimination half-life of 2-3 hours in adults 
[4], 1.5-1.9 hours in infants and children [6], and 4.9 hours in neonates [7]. In patients 
with renal failure and in those receiving continuous renal replacement therapy, total body 
clearance is delayed [8, 9], necessitating the use of longer dosing intervals or lower total 
daily doses.

Cefepime demonstrates time-dependent bactericidal activity in which its efficacy is de-
fined by the fraction of time for which the free (unbound) concentration is maintained 
above the minimum inhibitory concentration (MIC) of the bacteria being treated. The clas-
sic pharmacodynamic (PD) target that is associated with improved clinical outcomes for 
cefepime has been maintenance of drug concentrations above the MIC (fT>MIC) for ≥60% 
of dosing interval [10]. However, more recent data have suggested that more aggressive 
PD targets, maintaining drug concentrations above the MIC for the entire dosing interval 
(100% fT>MIC), should be used to ensure optimal clinical and microbiological outcomes 
[11,12]. Successful treatment of harder to treat infections, such as Gram-negative pneu-
monia, may require the administration of doses that maintain free serum concentrations at 
least 2-fold higher than the MIC for the entire dosing interval (100% fT>2xMIC, or fCmin>2 
xMIC) [13]. Meanwhile, in vitro studies have demonstrated that suppression of resistance 
selection during therapy occurs with an even more robust PD target of fCmin>3.8xMIC 
[14]. These latter data are consistent with in vitro time-kill studies for Pseudomonas aeru-
ginosa that show increased bacterial killing for β-lactam agents at concentrations up to 4 
times the MIC [15]; based on these time-kill data, some studies have used fT>4xMIC as 
the optimal PD target for β-lactam antibiotics [12].

In 2014, the Clinical and Laboratory Standards Institute (CLSI) revised cefepime interpre-
tive criteria (breakpoints) for the treatment of Enterobacteriaceae based on data showing 
clinical failures and low probability of target attainment using standard cefepime dosing 
in adults infected with Gram-negative bacteria with an MIC of 4 and 8 µg/mL [16, 17]. To 
optimize the administration of cefepime, CLSI employed the designation of “suscepti-
ble-dose dependent” (SDD) for isolates with an MIC of 4 and 8 µg/mL [17]. This change 
was made to signal that dosing regimens that result in higher drug exposures (i.e. higher 
doses or more frequent dosing) be administered to give the highest probability of ade-
quate coverage of these isolates [17]. Instead of using the term “intermediate”, which 
is often clinically interpreted as “resistant,” the SDD designation was implemented to 
encourage the administration of cefepime at high doses rather than discourage its use 
for treatment of less susceptible isolates. The SDD designation does not apply to Pseudo-
monas aeruginosa and other non-Enterobacteriaceae Gram-negatives since the approved 
dosing regimen for treatment of these organisms differ [17].

There is accumulating evidence in critically ill adults that standard β-lactam dosing by 
intermittent infusion, including for cefepime, often produces inadequate antibiotic con-
centrations contributing to suboptimal outcomes [12,18-19]. Pediatric studies also have 
found that traditional dosing via intermittent infusion may be inadequate for less suscep-
tible Gram-negative pathogens [20]. As a result, there is increased acceptance that ad-
ministration of ββ-lactam agents as an extended or continuous infusion maximizes the like-
lihood of PD target attainment in critically ill patients [21]. The administration of cefepime 
as a prolonged infusion significantly increases the probability of PD target attainment 
compared to intermittent infusion, even for isolates in the SDD range [20,22]. A recent 
meta-analysis of 6 randomized controlled trials (RCTs) and 4 observational studies found 
that prolonged infusion of meropenem was associated with higher clinical success rate 
(odds ratio 2.10, 95% CI 1.31-3.38) and lower mortality (risk ratio 0.66, 95% CI 0.50-0.88) 
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in adult patients with severe infections compared to intermittent infusion [23]. Similarly, in 
a meta-analysis of 13 RCTs comparing continuous infusion versus intermittent bolus of 
β-lactam agents in critically adult patients with respiratory infections, continuous infusion 
was associated with higher cure rates (risk ratio 1.18, 95% CI 1.07-1.30) [24]. Although 
data specific to cefepime are limited, there is mounting evidence that the use of pro-
longed infusions improves the likelihood of PD target attainment, which is especially im-
portant in patients with critical illness, serious bacterial infections, and infections caused 
by isolates with decreased susceptibility to the β-lactam agent being administered. 

The production of β-lactamases is the most frequent and important mechanism of re-
sistance to β-lactam antibiotics among Gram-negative bacteria. Extended-spectrum 
β-lactamases (ESBLs), carbapenemases, and AmpC β-lactamases have the capacity 
to hydrolyze drugs in this class with SHV-, OXA- and CTX-M-type enzymes being most 
prominent among Pseudomonas aeruginosa and Enterobacteraciae [25,26]. CTX-M-15 is 
the most widely distributed CTX-M-type ESBL and isolates producing this enzyme have 
higher MICs to cefepime than other ESBLs [27]. As noted above, maintenance of drug 
concentrations 4-fold above the MIC for the entire dosing interval decreases selection of 
resistance during cefepime therapy in a hollow-fiber infection model [14]. Although in vivo 
studies are needed to validate this target, optimized antibiotic exposures can prevent, 
or at least delay, the development of resistance among Gram-negative bacteria during 
treatment, particularly in high-burden infections such as pneumonia or undrained, in-
tra-abdominal abscesses.  

While administration of large doses can facilitate achievement of higher drug concen-
trations, cefepime is associated with dose-dependent toxicity particularly neurotoxicity 
[28-31], especially in patients with renal dysfunction, limiting the administration of overly 
large doses. In a single-center retrospective study of adult patient receiving cefepime 
who underwent therapeutic drug monitoring (TDM), a neurologic event considered possi-
bly related to cefepime occurred in 11% of 93 patients [29]; patients with Cmin > 20 mg/L 
had a 5-fold higher risk for neurologic events (OR 5.1, 95% CI 1.3-19.8) and those with 
a Cmin > 40 mg/L had a 9-fold higher risk (OR 9.4, 95% CI 2.2-39.5). Decreased renal 
function was significantly associated with neurotoxicity [29]. Similarly, in a study of adult 
patients receiving cefepime for febrile neutropenia, high cefepime concentrations were 
an independent predictor of neurological toxicity with a 50% probability of toxicity at Cmin 
> 22mg/L [30]. Patients with acute or chronic renal dysfunction may have reduced clear-
ance of cefepime, depending on the degree of glomerular filtration impairment, and are 
at increased risk of exposure-dependent neurotoxicity. 

It is crucial to individualize cefepime dosing in order to achieve concentrations that op-
timize efficacy, limit selection of resistant bacteria, and avoid toxicity. This is especially 
true for critically ill patients and those with Gram-negative infections caused by less sus-
ceptible isolates who are at high risk of suboptimal drug exposures and resultant clinical 
failure, as well as patients with renal dysfunction at higher risk for cefepime-induced neu-
rotoxicity. Monitoring of blood concentrations is particularly important in order to guide 
dosing that will achieve targeted serum drug concentrations. Although data demonstrat-
ing improved clinical outcomes with TDM for β-lactam agents are limited, TDM has been 
shown to improve PD target attainment in critically ill patients for various drugs in this 
class [32-34]. As a result, β-lactam TDM is becoming an increasingly valued part of clini-
cal care of critically ill patients [21, 35-36]. 

In order to facilitate TDM, quantitative drug assays need to provide precise results with 
short turnaround time. For cefepime, drug concentrations are most often measured using 
validated high-performance liquid chromatography (HPLC) or liquid chromatography-tan-
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dem mass spectrometry (LC-MS/MS) methods [37-40]. Cefepime poses an added chal-
lenge for TDM due to rapid ex-vivo degradation in plasma at room temperature, requiring 
that all processing occur at 4°C [39]. The purpose of this review is to list the various LC-
MS/MS methods in human blood, plasma, and serum for quantitation of cefepime with 
information on sample preparation, chromatographic and mass spectrometric conditions 
and validation parameters (Table 1) and to discuss relevant bioanalytical strategies and 
considerations for implementation of LC-MS/MS assays for therapeutic drug monitoring 
(TDM) of cefepime. 

LC-MS/MS methods for cefepime analysis
Cefepime (Figure 1, CAS no. 88040-23-7, Pyrrolidinium,1-[[(6R,7R)-7-[[(2Z)-(2-ami-
no-4-thiazolyl)(methoxyimino)acetyl]amino]-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]
oct-2-en-3-yl]methyl]-1-methyl-, inner salt) has a chemical formula of C19H24N6O5S2 with 
an average molecular weight of 480.56 g/mol.

Sample preparation
Sample preparation is a critical step in bioanalytical method development. Due to limit-
ed stability of cefepime in plasma and serum at room temperature, samples should be 
immediately placed on ice after collection and processed at 4˚C temperature to provide 
accurate results. Plasma [41,42] and serum [43-45] samples have been used as the 
biological matrix for cefepime TDM assays. 
Sample cleanup by removal of interfering matrix components (proteins, salts, and lipids) 
is often necessary to reduce the risk of matrix effects in LC-MS/MS procedures and to 
provide required selectivity, sensitivity, and ruggedness. The two most common methods 
for sample cleanup are (i) protein precipitation and (ii) solid-phase extraction (SPE) for 
cefepime TDM assays. For protein precipitation, the majority of the reported assays uti-
lize methanol or acetonitrile as the precipitation and extraction solvents. SPE with Oasis 
HLB cartridges was utilized by Ohmori et al. [43], and an online SPE cleanup with Oasis 
HLB column was employed by Zander et al. [45]. These assays utilized stable labeled 
2D3-cefepime or 13C2D3-cefepime as an internal standard, which provides several advan-
tages in the accurate quantitation of drug levels in biological samples such as faster run 
time, improvement in intra-injection reproducibility, reduction of matrix effects and better 
sensitivity. 

Chromatography and detection
Reverse phase chromatography was utilized for reported methods to separate cefepime 
from other molecules in the biological sample extract by partitioning between the mobile 

Figure 1. Structure of  cefepime
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and stationary phases. Ammonium formate buffer or water with 0.1% formic acid was 
used as the aqueous mobile phase and methanol or acetonitrile with 0.1% formic acid 
was used as organic mobile phase. Nonpolar or hydrocarbon-like systems (C8, C18, 
Phenyl and F5) were used as the stationary phases. The majority of reported LC-MS/
MS methods utilized tandem mass spectrometry for the detection and quantitation of 
cefepime, with the exception of Lefeuvre et al. [41]. Cefepime is an inner salt and readily 
ionizes in the positive mode to provide excellent response. Multiple reaction monitor-
ing transitions used by various methods is summarized in Table 1. The most common 
products of cefepime fragmentation that were utilized for quantitation were m/z 481.0 
[M + H]+ →  m/z 167 and 86.1 [42-44]. In some cases, doubly charged ion of cefepime m/z 
241 [M + 2H]2+  was used to monitor the product m/z 227 for quantitation [41,45].

DISCUSSION
Recently published LC-MS/MS assays for cefepime TDM are summarized in Table 1.  
Paal et al. [44], reported a HPLC-MS/MS method for quantification of cefepime along with 
five other antibiotics in human serum (Table 1). The method employs a simple sample 
cleanup by protein precipitation and analysis utilizing stable labeled internal standards. 
Method utilized separation with C8 reverse phase HPLC column followed by MS/MS de-
tection with clinically relevant concentration ranges. The assay demonstrated excellent 
selectivity, linearity and dilution integrity. Analytes were stable for 6 h at room tempera-
ture, 24 h at 4 °C, and two weeks at -20 °C.

Lefeuvre et al. [41], reported an UHPLC-HRMS assay for the simultaneous quantitation of 
cefepime and 14 other antibiotics in human plasma (Table 1). Sample cleanup involved 
protein precipitation followed by separation with C18 reverse phase chromatography. 
High-resolution full scan data acquisition was utilized for detection. Cefepime was stable 
for 48 h at room temperature and 2 – 8 °C and 20 days at -20 °C. This UHPLC-HRMS 
assay has the advantage of using acquired data for the retrospective analysis of metab-
olites.

Rigo-Bannin et al. [42], developed and validated a UHPLC-MS/MS method for simultane-
ous quantitation of ten β-lactam antibiotics in human plasma (Table 1). Sample cleanup 
involved protein precipitation, dilution, C18 reverse phase chromatographic separation 
followed by tandem mass spectrometric detection. The method demonstrated good lin-
earity, selectivity and robustness to be utilized for TDM analysis. Cefepime was stable for 
3 days at room temperature and 5 ± 3 °C and 6 months at -75 ± 3 °C.

Zander et al. [45], reported a UHPLC-MS/MS method for analysis of eight β-lactam anti-
biotics in human serum (Table 1). Sample cleanup involved SPE followed by C18 reverse 
phase chromatographic separation and tandem mass spectrometric detection. The as-
say demonstrated to be robust and successfully employed for the analysis of clinical 
samples.

Methods reported by Paal et al. [44], and Rigo-Bannin et al. [42], involved simple sample 
cleanup, robust chromatographic separation and tandem mass spectrometric detection. 
While other methods used complex sample preparation, 2D-HPLC or HRMS detection. 
Method by Paal et al. [44] is robust for analysis of cefepime in human serum with an ef-
ficient sample preparation and LC-MS/MS analysis. While method by Rigo-Bannin et al. 
[42] is robust for analysis of cefepime in human plasma with simple  sample cleanup and 
UPLC-MS/MS analysis.

Cefepime has limited stability in human plasma and serum at room temperature and the 
duration of acceptable stability varies from 3 h to 3 days at room temperature based on 



different reports (Table 1). However, the reason for these significant differences in the sta-
bility of cefepime in human plasma and serum at room temperature remains unresolved. 
It is critical to establish sufficient stability of cefepime during sample collection, storage, 
and processing to generate accurate quantitavie bioanalytical results.
 
Clinical Applications and Future Directions
In the current era of increasing antimicrobial resistance, it is paramount that antimicrobial 
dosing is personalized to assure optimal exposures that will result in clinical cure while 
minimizing the selection of resistant organisms. Therapeutic drug monitoring allows clini-
cians to provide individualized, target-oriented dosing for β-lactam antibiotics, including 
cefepime. Empiric dosing strategies, based on population PK modeling and Monte Carlo 
simulations, are designed to maximize the probability of target attainment. However, inter- 
and intra-variability in drug clearance and the volume of distribution prevents the use of a 
one-size-fits all dosing approach. The availability of LC-MS/MS assays that provide rapid 
and accurate measurement of cefepime concentrations can aid clinical pharmacists and 
clinicians in efforts to confirm drug exposures in individual patients, as well as facilitate 
adjustment of dosing in real-time to achieve desired levels. This is especially important in 
critically ill patients who require precise drug exposures to maximize bacterial killing and 
minimize the risk of toxicity. For instance, in a patient with a documented Gram-negative 
infection, clinicians can utilize TDM to estimate fT>MIC utilizing a variety of methods (i.e. 
Bayesian dose adaptation, log-linear regression, etc.). These data can then inform dose 
adjustments that aim to maximize the probability of target attainment in that patient. As 
described above, a number of PD targets have been associated with improved effec-
tiveness outcomes, with >60% fT>MIC being the minimum time-dependent goal. TDM 
also holds potential to provide exposures that limit the selection of antimicrobial resistant 
phenotypes, although this has been predominantly established in vitro [14]. 
TDM in infants and children is challenged by a desire to minimize blood sampling, restrict 
entry into vascular access devices (i.e. central venous catheters), and avoid painful pro-
cedures such as venipuncture. Microsampling techniques can improve the performance 
of pediatric PK studies [46-48], applying less invasive approaches to blood sampling and 
reducing the risks to the patient. The availability of validated cefepime assays that utilize 
as little as 50 µL of plasma or serum can facilitate the clinical application of microsam-
pling techniques and promote TDM in patients where sampling is challenging. Further-
more, application of whole blood microsampling (10-20 µL) to quantify cefepime levels in 
pediatric patints will be a convenient and efficient approach for TDM. Recently, Barco et 
al. [49], developed and validated a volumetric absorptive microsampling (VAMS™) assay 
for four antibiotics in human whole blood. VAMS™ approach allowed for accurate quan-
titation of drugs with no significant influence of hematocrit values. However, to employ 
VAMS™ approach for clinical studies, optimal collection, drying, shipping, and storage 
conditions with minimal drug degradation needs to be established. In addition, utility of 
VAMS™ approaches for TDM require converting whole blood concentrations to plasma 
or serum concentrations, where previously established reference ranges are available. 
Further studies comparing VAMS™, venous blood, and plasma samples are required to 
assess any potential difference between capillary blood from finger pricks and venous 
blood.
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ABBREVEATIONS
ACN, acetonitrile; APCI, atmospheric pressure chemical ionization; CV, coefficient of vari-
ation; ESI, electrospray ionization; IS, internal standard; F/T, freeze–thaw; HLB, hydrophil-
ic–lipophilic based; HRMS, high resolution mass sepectrometry; IS, internal standard; LC, 
liquid chromatography; MeOH, methanol; MRM, multiple reaction monitoring; ODS, oc-
tadecylsilyl; PK, pharmacokinetic(s); RSD, relative standard deviation; SPE, solid‐phase 
extraction; TBME, ter‐butyl methyl ether; UHPLC, ultra‐high performance liquid‐chroma-
tography; UPLC, ultra‐performance liquid‐chromatography.
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