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ABSTRACT
As biologic drugs become an increasing segment in the overall pharmaceuti-
cal market, it is important to develop accurate and reliable methods to analyze 
these drugs in biological matrices. With advancements in technology, biologics’ 
complex molecular structures can now be selectivity distinguished and quanti-
fied using high-resolution mass spectrometry and deconvolution software. Intact 
(top-down) mass spectrometric techniques have been established as alternative 
or complementary bioanalytical techniques for instances when ligand binding 
assays (LBAs) alone were not well suited, as it can provide additional structural 
information, in its pharmacologically active form. 
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INTRODUCTION
In the past decade, there has been a shift in the pharmaceutical industry towards 
the development of biologic based therapeutics such as peptides, fusion proteins/
peptides, PEGylated proteins/peptides, monoclonal antibodies, antibody drug con-
jugates, and many other constructs. As a result, more than half of the top selling 
drugs in the world are biologics. The rapid growth of biologics has also brought 
about a significant increase in the molecular complexities. Bioanalytical scientists 
are challenged to develop accurate and reliable methods to analyze these complex 
therapeutics in biological matrices (i.e., plasma, urine, tissue, and other body fluids) 
[1-3], which is critical for assessing drug efficacy and toxicity. This is necessary for 
appropriate interpretation of drug efficacy and toxicity during pharmacokinetic and 
immunogenic evaluations during pre-clinical and clinical trials. However, biologics 
molecular structure complexity can present challenges during bioanalytical meth-
od development. Traditionally, ligand binding assays (LBAs) have been employed 
in the pharmaceutical and clinical industries due to their high sensitivity, ease-of-
use, high throughput, low equipment costs, and their general acceptance. Howev-
er, these techniques rely heavily on expensive customized capture and detection 
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antibody reagents that typically take several months to generate. In addition, LBAs often 
result in cross-reactivity and selectivity issues, especially with regards to biologic drugs 
due to the potential presence of anti-drug antibodies. Lastly, since LBAs often measure 
the drug at the binding sites, some information, that could change the function of drug, 
such as glycan attachment, may not be detected by these indirect techniques [4-6].
More recently, mass spectrometric techniques have been established as alternative or 
complementary bioanalytical techniques for instances when LBAs alone were not well 
suited. Mass spectrometric methods can provide additional selectivity and reduced in-
terference, generally take less time to develop, and can provide additional information 
beyond what is possible with LBAs, such as information about isoforms, PTMs, and deg-
radation products. In addition, further data mining can be explored after initial analysis.  
For smaller proteins and peptides (generally less than 10,000 Da), traditional, ‘small mol-
ecule’ techniques may be employed. However, for larger molecules, additional sample 
preparation and mass spectrometric analysis steps are required, due to the complexity of 
the drug structures. These mass spectrometric techniques can further be broken down 
into several sub-categories: bottom-up, middle-down, and top-down [6-8]. 
Currently, the most common alternative to LBAs is bottom-up analysis using mass spec-
trometry. This technique varies, but usually it employs several general steps: non-specific 
(or specific) immunocapture of the drug, followed by denaturation, reduction, alkylation, 
and enzymatic digestion of the drug, resulting in a signature (or surrogate) peptide(s) (i.e. 
unique amino acid sequences, not found in other proteins) that is used as a surrogate for 
quantitative analysis of the intact drug. The coupling of non-specific or specific immuno-
capture (clean-up/enrichment) techniques with liquid chromatographic separation and 
selected reaction monitoring mode (SRM) mass spectrometry (Hybrid LBA-LC-MS/MS), 
often minimizes interferences, improves selectivity, leading to improved cost / time-effi-
ciencies. In addition, since low resolution instruments can be used for bottom-up analysis 
(typically triple stage quadrupole mass spectrometers, QqQ), it is possible to produce 
high throughput methods, without much modification to current lab settings (triple quad-
rupoles are utilized commonly in both biopharmaceutical and clinical industries).  Analyte 
responses are normalized using internal standards, which are added in the same con-
centration to each sample. Bottom-up techniques generally use stable isotope labelled 
peptides as the internal standard (similar to the signature peptide, added at the end of 
extraction) and proteolytic enzymes, such as trypsin, Glu-C, or Lys-C [7, 9, 10-13].  Tryp-
sin cleaves proteins on the C-terminal side of arginine or lysine (unless proline on the 
C-terminal side). Lys-C cleaves proteins on the C-terminal side of lysine. Glu-C cleaves 
proteins on the C-terminal side of glutamic acid or aspartic acid. However, middle-down 
techniques typically use similar internal standards but digestive enzymes such as IdeS, 
IdeZ (IgG specific proteases), pepsin, or papain, which partially digest the molecule into 
large subunits (i.e. Fab and Fc, Fab2, light and heavy chain, etc). IdeS, IdeZ, and pepsin 
cleave immunoglobulins at the hinge region, producing Fab2 and Fc fragments. Papa-
in cleaves immunoglobulins above the hinge region, producing 2 Fab fragments and 
a Fc fragment. Depending on the size of the fragment formed, bottom-up or top-down 
mass spectrometric techniques may be used for analysis. Middle-down techniques can 
provide additional structural information, not possible using surrogate peptide methods, 
especially when evaluating multiple fragment types at once [7, 14-16].
While bottom-up and middle-down mass spectrometry practices provide valuable and 
reliable information, there has been increasing interest in analyzing fully intact biophar-
maceutical drugs using mass spectrometry, designated top-down mass spectrometry.  
Historically, top-down mass spectrometry methods were thought to only be useful for 
qualitative characterization or relative quantification in proteomics [17, 18]. While this pro-
vides very valuable analytical information about biopharmaceutical drugs, recent techno-
logical advances have made it possible to use these techniques for absolute quantitative 
bioanalysis. In order to evaluate these complex molecules at the intact level, high-resolu-
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tion instrumentation, such as Orbitrap (linear-Obitrap, Q-Orbitrap), Time-of-Flight (QTOF, 
TOF-TOF), or Fourier Transform ion cyclotron resonance (FTICR) mass spectrometers, 
are necessary [19, 20]. However, the sensitivity obtained using bottom-up techniques 
has not yet been replicated for top-down methods. If high sensitivity is not necessary, 
quantitative analysis of intact biologic drugs (top-down) can provide quantitative informa-
tion while preserving structural information (such as post-translational modifications and 
isoforms), allowing better differentiation between closely related molecules. For certain 
methods, removal of the digestion step (when deglycosylation is not necessary) or the 
denaturation steps (native conditions), will also allow for easier and shorter sample prepa-
ration. However, obtaining appropriate internal standards can present challenges with 
top-down techniques. Best practices involve fully intact stable isotope labelled (SIL) in-
ternal standard biomolecules, but this is often difficult to make, expensive, and time-con-
suming. Non-specific SIL molecules, such as SILuTMMab for monoclonal IgG antibodies, 
are available for purchase and can be valuable for normalization in generic methods in 
animal matrices. Although not as good at tracking compared to SIL IS’s, analog internal 
standards may be used in situations where SIL IS’s are unavailable or cost prohibitive. 
While the data processing for intact analysis is more complicated than SRM, as it involves 
deconvolution to the zero charge state, most companies manufacturing high-resolution 
instrumentation have developed commercially available software capable of deconvolut-
ing the very complex, but valuable, data [20, 21]. Figure 1 shows a schematic overview 
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Figure 1. Schematic overview of  the sample preparation for top-down intact analysis of  
biologics under denatured and native conditions.
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of the sample preparation and analytical techniques for top-down intact biopharmaceu-
tical drug quantitation. As shown in Table 1, several research groups have developed 
top-down methods for quantitative bioanalysis of biologics, mostly peptides and proteins, 
both in pharmacokinetic and biomarker applications. Intact bioanalysis has been evalu-
ated in both animal and human serum / plasma and as well as human tissues. Molecular 
weights of these compounds range from 4.4 to 150 kDa; with lower limit of quantifications 
(LLOQ) ranging from 0.001 to 25 μg/mL [4, 7, 11, 19-21, 23, 27, 41, 42, 47].

Sample preparation
Unlike bottom-up or middle-down based techniques, which require digestive enzymes, 
top-down methods can be performed without the need for digestive enzymes. Based on 
review of the literature on quantitative intact biopharmaceutical analysis, samples are 
typically prepared for two main types of analysis: denatured or native conditions. Under 
denatured conditions, the molecule is unfolded, removing tertiary and secondary bonds, 
so that its entire primary structure is available for analysis. When the molecule is unfolded, 
this exposes more sites for protonation, allowing for more, as well as higher charge states, 
during mass spectrometric analysis. This can be helpful, especially when analysis is done 
on an instrument which has a specific mass-to-charge ratio (m/z) range. An example of 
this is hybrid quadrupole-Orbitrap instruments, which are commonly used for intact analy-
sis. However, if higher charge states are not necessary for analysis (within instrument m/z 
range), native conditions can be useful in providing additional information regarding the 
pharmacologically active form of the drug. This can allow for both higher confidence with 
regards to the quantitative technique, since the active form of the drug is being evaluated 
(direct analysis), as well as provide valuable information about binding interactions and 
structural confirmations [22].
 Under denaturing conditions, samples are prepared by first undergoing an immunocap-
ture step. Capture antibodies (or other capture reagents) are added to aliquots of sub-
jects’ samples, in biological matrix, where the analyte of interest (drug or biomarker) will 
selectively bind to it. In order to separate the capture reagent-analyte complex from the 
rest of the matrix components, the capture reagent is usually bound either with magnetic 
beads (such as streptavidin beads bound to biotinylated capture antibody-analyte com-
plex) or to a microwell coated plate (such as a 96-well polypropylene plate incubated 
overnight with streptavidin to form a streptavidin coated-plate; which can then bind to 
(and immobilize) biotinylated capture antibody-analyte complex). The bound complex is 
then washed to remove other matrix components from the sample. Binding of the capture 
reagent, analyte, and beads or coated-plate can occur simultaneously, or separately in 
various combinations. The order in which the incubations will occur is dependent on the 
molecules involved and should be evaluated during method development [23, 24]. De-
pending on sample matrix complexity, the capture step may not be necessary; however, 
most biological matrices would require a capture step to clean up the final extract. The 
capture reagent may specifically bind to the drug (such as an anti-idiotypic antibody), 
or it may be more universal (non-specific); for example, for monoclonal antibody (mAb) 
based drugs, Protein A, Protein G, or anti-human Fc (in animal matices) can be used.  
After the beads or plate has been appropriately washed, samples are subjected to dena-
turing conditions [21, 22]. Denaturation can occur in a variety of ways. One technique in-
volves exposing the sample to alkaline or acidic conditions, mild enough to be amenable 
to mass spectrometric analysis, such as 1% formic acid. Other techniques involve using 
high temperatures and or surfactants to denature the molecules. Using this technique, 
reducing and alkylating the molecule after denaturation is required, to ensure it does not 
refold. Reduction involves addition of a reducing agent, such as dithiothreitol (DTT) or 
tris(2-carboxyethyl)phosphine (TCEP), to break disulfide bonds, and alkylating agents, 
such as iodoacetamide (IAM) or iodoacetic acid (IAA), are added to prevent disulfide 
bonds from reforming [9]. Alkylating agents will change the molecular weight of the mol-
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ecule, which must be taken into account. The final extract should be of similar compo-
sition to the starting mobile phase conditions [7, 25]. Additional clean up, such as solid 
phase extraction or molecular weight cut-off filtration, may be included in the procedure, 
if necessary. Solid phase extraction can most commonly be used in sample clean-up of 
smaller proteins (10-15 kDa), as it will not only separate compounds based on surface 
chemistry, but also by size exclusion. In particularly dirty samples, such as blood or plas-
ma/serum, depletion of highly abundant proteins can be employed to improve selectivity 
[8, 21, 26, 27].
 Under native conditions, samples are subjected to similar capture step described in 
the denatured conditions section above. After that, additional clean up steps, such as 
solid phase extraction, molecular weight cut-off filtration, dry down/reconstitution, or di-
lution, may be performed as needed. For native intact analysis, final extracts should be 
in near neutral solutions with similar pH to physiological conditions (pH 7.4). This can be 
obtained by reconstitution or dilutions with various buffers, such as ammonium acetate, 
ammonium bicarbonate, or triethylammonium bicarbonate [28, 29]. A buffer exchange 
step will likely be necessary in order to remove salts, which are not compatible with mass 
spectrometric analysis [21, 25]. Water has also been found to appropriately work as a 
diluent for the final extract for certain intact analysis [30].  
In addition, for either native or denatured condition, if glycan analysis is not part of the 
evaluation, a deglycosylation step, using enzymatic digestion (i.e. PNGase F (glycopep-
tidase) or EndoS), should be considered. PNGase F and EndoS cleave N-linked oli-
gosaccharides from proteins [10]. This will clean up the final mass spectra and make 
interpretation of data much simpler [22]. 

Instrumentation
Once samples have been extracted, analysis is conducted using liquid chromatography 
–tandem mass spectrometry (LC-MS/MS). Traditional instrumentation used for quanti-
tative bioanalysis in industry, such as reverse phase liquid chromatography and SRM 
(QqQ) mass spectrometry, while considered highly selective, and therefore well suited 
for bottom-up techniques, is not generally effective with regards to intact quantification.  
Different instrumental conditions are required depending on the type of evaluation, native 
or denatured. In addition, if a deglycosylation step is not performed, shorter hydrocarbon 
chain reverse phase liquid chromatography columns, such as a C4 column, are typically 
used, since there is typically an increased hydrophobicity of proteins [8, 14]. Intact (top-
down) analysis often requires high-resolution mass spectrometry instrumentation, using 
full-scan HRMS quantitated using extracted ion chromatograms (XIC), summed XICs, or 
deconvolution HRMS. Further discussion on instrumentation needed for top-down quanti-
tative analysis will be addressed in the chromatography, ionization techniques, and mass 
analyzers subsections below.

Chromatography
Traditionally, ion exchange chromatography (IEC) was employed for intact quantitative 
analysis under native conditions. This was done utilizing a pH gradient (as opposed to 
changes in salt concentration), to be more compatible with the mass spectrometer. Mo-
bile phases, such as ammonium acetate at different molarities, are run through a weak 
cation exchange column (such as PolyCAT A, used more for proteins) or mobile phases, 
such as diethanolamine buffer, run through a weak anion exchange column (such as a 
monolithic IEC, more often used for oligonucleotides or characterization of post-transla-
tional modifications (PTMs) on proteins) [14, 31]. More recently, due to the complexity 
of large molecule chromatograms, and in order to better separate the different charge 
states, isotopes, and PTMs, 2D-chromatography has increased in popularity. Most com-
monly, size exclusion chromatography (SEC) has been coupled with ion exchange chro-
matography, prior to detection using high-resolution MS or MS/MS. SEC will first sepa-
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rate the molecule based on size, using columns such as PolyHydroxyEthyl A or XBridge 
Protein BEH SEC, followed by IEC separation based on pH [13, 22, 32]. Some research 
groups have also found success in coupling size exclusion chromatography with reverse 
phase chromatography, using more traditional mobile phases, such as 0.1% formic acid 
in water and 0.1% formic acid in acetonitrile, as well as traditional stationary phases, 
such as C18 columns [33]. For denatured conditions, groups have found some success 
with 1D reverse phase chromatography using traditional mobile and stationary phases 
[34, 35], sometimes requiring higher column temperatures [36, 37]. However, this is de-
pendent on the complexity of the molecule, and the selectivity needed for the method 
being developed. If high selectivity is necessary, 2D chromatography has been shown to 
provide improved separation. For denatured samples, size exclusion chromatography is 
often coupled with reverse phase chromatography, in a similar manner to native condi-
tions described above. Some research groups have also found success coupling reverse 
phase chromatography with HILIC (two-dimensional), to improve overall sensitivity [8].
For both native and denatured conditions, flow rates are typically in the micro or nano 
range (~5-500 μL/min). Traditional column particle sizes and dimensions can be obtained 
for this analysis, however, increased pore sizes (200-1000 Å) are commonly necessary 
to attain appropriate separation [22]. Pore sizes as high as 4000 Å may be necessary 
for large highly complex molecules, such as antibody-drug conjugates [8]. Increased 
column temperatures (50°C or higher) showed improved separation for large molecule 
bioanalysis [38].  Peak shape may be improved by specific mobile phase additives, such 
as trifluoracetic acid (TFA). While TFA has been shown to cause ion suppression in elec-
trospray ionization based techniques, reduced suppression has been seen in situations 
where acetic acid (0.5%), formic acid (0.2-0.3%), or propionic acid (1%) were added 
along with TFA [8].

Ionization techniques
As described in the introduction, some research groups are attempting to quantify large 
molecules intact using low resolution instruments, such as triple quadrupole mass spec-
trometers.  However, it is difficult to obtain accurate results without a high-resolution mass 
spectrometer. This is because of the complexity of the spectra for large molecules, due 
to the high number of charge states, each of which contains various isotopic peaks. In 
addition, for proteins, molecular heterogeneity and different PTMs will affect the spectra 
and create multiple peaks for the same molecule. Due to the advancement in technology, 
these factors can be selectively distinguished using a high-resolution mass analyzer.  In 
order to quantify large molecules, their m/z must fall within the instrument's m/z range.  
This means that higher precursor ion charge states (between approximately +5 and +73, 
with highest charge states being more common with denatured conditions) are necessary 
in order to fall within most instrument's m/z range (< 6000 m/z) [39, 40]. This requires an 
ionization source that can create many charges on one molecule (ion). In most cases, an 
electrospray ionization source (ESI) is required for quantitative work. For proteins, this will 
typically be done in positive ESI mode [22, 41, 42]. Occasionally, matrix assisted laser de-
sorption ionization (MALDI) has been discussed as an ionization source option for intact 
quantitative analysis. And although MALDI can reach high m/z ranges, quantitation using 
this technique is not general practical; and therefore, this ionization source has rarely 
been applied in actual method development.

Data processing
While SRM (QqQ) is highly selectively due to multiple levels of distinguishing the analyte, 
and therefore is most commonly used for quantitative analysis in industry, it has not been 
as successful for the analysis of intact large proteins or other large molecule analysis.  
This may be due to both the charge state distribution and the difficulty of efficiently frag-
menting large molecules (ions) in the collision induced dissociation quadrupole (CID).  
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Often times for large molecules, low collision energy will not result in effective fragmen-
tation, while high collision energy will result in extensive fragmentation, both of which 
negatively impact sensitivity. An alternative option that can be used on triple quadrupole 
instruments, is to use pseudo-SRM mode, in which the precursor and product ion are the 
same. This is more useful in large molecule quantitative bioanalysis, if CID is problematic.  
However, this technique is not as selective as true SRM mode, and therefore will often not 
produce reliable results, especially if the method requires a low LLOQ, or if selectivity is 
an issue, which is common in complex matrices [39, 43]. 
 For these reasons, many researchers have moved away from traditional, lower-resolu-
tion instrumentation, in favor of high-resolution instrumentation, such as Q-orbitraps and 
QTOFs, as discussed previously. When employing high-resolution instrumentation, there 
are several main modes of analysis currently, full-scan HRMS using extracted ion chro-
matograms (XIC), summed XICs, or deconvolution HRMS. In full-scan HRMS, the entire 
mass (m/z) range is scanned in both mass analyzers (quadrupole and orbitrap or TOF), 
or only the precursor ion is used for analysis. The power of the technique is derived from 
the selectivity gains obtained from the high-resolution capabilities of the instruments (high 
resolving power and accurate mass). Since this type of instrumentation can distinguish 
between very similar molecules (ions), closely related peaks can typically be resolved 
based on m/z, and the analyte peak can be quantified using area under the curve from 
the extracted ion chromatogram (XIC). In some instances, it has been shown that sum-
ming multiple charge states may be necessary to obtain the sensitivity required for a par-
ticular assay [11, 20-22, 39, 43, 48]. In some instances, this has been shown to have no 
effect. Optimization is required in order to determine the best mode of analysis for each 
method. Another technique for analysis is called deconvolution. In this mode, software 
can be used to deconvolute the entire mass spectrum (all charge states and isotopes). 
The results of this deconvolution are a new spectrum that compares intensity to mass (not 
m/z), which is obtained from all the charge states available in the original spectra. This 
can then be evaluated in a similar manner to the full-scan XIC mode. While some studies 
have shown this mode of analysis is effective, others question whether it can be used 
to confidently quantify biopharmaceutical products in biological fluids, or if it should be 
used only for the qualitative characterization of these molecules [20-22, 39, 43, 49, 50].

CONCLUSIONS AND FUTURE PERSPECTIVES
Although traditionally, intact large molecule analysis using mass spectrometry was limit-
ed to qualitative characterization (often only in solution, and not biological matrices), in 
the past decade, advancements in technology have allowed for accurate quantitative 
bioanalysis of large molecules, at moderate concentrations. Using high-resolution mass 
spectrometry, structural information can be maintained, while selectively quantifying drug 
levels in complex biological matrices. As technology continues to advance, intact large 
molecule quantitative bioanalysis will become a more practical application, which could 
lend itself to high throughput analysis, in industry. This will not be possible until advance-
ments allow for lower limits of quantification, and selectivity improvements. Advance-
ments in both hardware (such as improved collision cells and wider m/z ranges) and 
software (such as more advanced deconvolution software) may lead to the improvements 
needed for practical intact quantitative analysis. Analytical challenges related to biolog-
ics, such as instability due to oxidation or protease activity, adsorption, and non-specific 
binding, will also need to be addressed (case by case). Until then, intact bioanalysis of 
biopharmaceutical drugs can be employed as a complementary technique to traditional 
methods, as it is still able to provide additional structural information at moderate concen-
trations, not obtainable any other way.
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