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There are several air pollutants in the environment that include HM, O3, VOCs, PM 10, PM
2.  5,  CO,  SO2,  and  NOx.  PM10  particles  are  less  than  10  m  in  diameter  and  have  adverse 
effects on the human body as well as the environment and cause ecological consequences
such as vision impairment and acid rain. Monitoring of HM in ambient air is vital due to
their  adverse  effects  on  human  health  with  some  of  them  being  classified  as  carcinogens 
including  Ni,  Cd,  As,  and  Cr.  The  Government  of  India  brought  the  National  Clean  Air 
Program (NCAP)  to  address  the  deteriorating  quality  of  air.  Continuous  exposure to HM 
pollution is a significant threat to life as it gets accumulated in the food chain and leads to 
health  risks. Bioremediation, especially  using  microbial  biosorbents  is  a  viable  and 
sustainable  approach  for  remediating  HM  contamination  in  areas  and  environments. 
Microbes use different metal sequestrations to improve metal biosorption to remove metals
and metalloids from solutions by using the constituents of the biomass. 

 
 
Keywords: Heavy Metals, Particulate Matters, Air Pollution, PM 10, PM 2.5, Toxic, Health Risks, biosorbent 
     
1. Introduction 
HM contamination is a serious environmental and 
public health hazard. HMs are high atomic weight 
and toxicity, and they are found in rocks, soils and 
water naturally but human activities, particularly 
industrial and commercial ones, also contribute to 
their release into the environment. It is well known 
that HMs are toxic for a long time. Other HMs such 
as zinc, copper, and nickel are crucial for human 
health even though they are also common in the 
environment [1]. Manganese is a representative of 
HMs since it composes about 0. 1% of the earth’s 
crust. 
HMs may be harmful when they come into contact 
with environmental factors and the food chain; for 
instance, methylmercury from mercury in water is 
particularly poisonous [2]. Chromium, a widely used 
metal in industry, is a carcinogen [3]. However, the 
benefits of some HMs are often outweighed by the 
risks they pose in physiological activities. Some of 
these HMs enter the human body through water, 
air, and food, and regulate different biological 
processes [4].  
Lead, antimony, cadmium and thallium are all toxic 

HMs that are commonly used in industrial 
processes and contribute a lot of pollution to the  
atmosphere. Thallium in particular is associated 
with alopecia and has more serious effects when 
compared to other HMs [5]. 
Antimony and chromium exposures also enhance 
carcinogenicity [6] while lead exposure affects 
children’s intellectual function [7]. Mercury leads to 
Minamata disease and cadmium results in itai-itai 
disease. HM toxicity affects several human body 
systems such as the cardiovascular system, skin, 
liver, and kidney systems, and the nervous system. 
People should minimize exposure to high HM 
emission areas to prevent health impacts. 
 
1.1 HM in the Environment 
Heavy metals are naturally present in the 
environment and essential for life, but their 
accumulation in organisms like lead, copper, nickel, 
chromium, arsenic, cadmium, and mercury can be 
harmful. [8]. Thallium is one of the most toxic HMs 
that occurs naturally and is also an industrial 
pollutant that puts a significant health burden on 
humans [9][10]. Antimony is highly toxic and is 
released through natural events and industrial 
activities at nanogram levels and causes respiratory 
disorders and other health effects [11][12]. In the 
form of Zn2+, it is an essential cofactor in many 
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enzymes while higher levels are toxic depending on 
exposure; mining and smelting are the highest 
emitters of zinc [13]. Copper is essential for plant 
metabolism but toxic to plants in excess [14]. Nickel 
that is emitted into the environment from natural 
and man-made sources has several adverse effects 
on human body including cardiovascular and 
respiratory diseases [15][16]. Cobalt, while having 
some beneficial effects in smaller quantities, is 
highly toxic in large emissions [17]. The two forms 
of chromium are chromium (VI) which is highly 
toxic compared to chromium (III) and that 
industrial activities mainly release it [18]. Manganese 
is also present in the environment in sufficient 
amounts and is essential for life but may be toxic in 
high concentrations especially as used as petrol 
additive [19]. Lead is one of the non-biodegradable 
substances that are being introduced into the 
environment due to human activities and more so 
to children [20]. Mercury is highly toxic and is 
increasing due to human activities; in the marine 
environment it is methylated resulting in a potent 
neurological toxin [21][22]. Cadmium, released 
through natural and industrial processes, enters the 
water and food chain and has no useful function but 
causes human health hazards [23].  
 
2. Literature Review 
The atmosphere envelops the Earth, allowing life-
sustaining solar energy to penetrate the planet's 
surface or water [24]. However, industrialization and 
urbanization during the Industrial Revolution led to 
a significant increase in particulate matter (PM) and 
heavy metals (HM) emissions, altering the natural 
atmosphere [25]. Swift industrialization and 
urbanization increased emissions from biomass 
burning and fossil fuel combustion [26]. 
Primary particles in the environment, such as organic 
and elemental carbon and soil-related particles, 
originate from biomass products and fossil fuel 
combustion and are relatively easier to identify and 
quantify than secondary particles [27]. HM, 
hazardous metallic elements with high densities, 
primarily enter the atmosphere through metal mining 
operations, sewage effluent discharge, metal-
enriched sewage sludge, and air particulate deposition 
[28]. 
Environmental metals stem from both 
anthropogenic (industrial and vehicle emissions) and 
natural sources (volcanic activity, vegetation 
emissions, and dust resuspension) Iron and lead are 
common metals found in airborne particles, with 
sources including oil burning, re-suspended soil, and 
vehicular emissions [29]. 
PM pollution is a significant environmental concern 
due to its composition of liquid and solid 
components, including allergens, nitrates, sulfates, 
heavy metals, and polycyclic aromatic hydrocarbons 

(PAHs), which can lead to gene mutations and cancer 
[30]. PM is categorized based on size, with PM2.5 and 
PM10 being the main groups [31]. 
Road dust acts as a sink for contaminants from 
various sources, accumulating on road surfaces due 
to forces such as particle inertia, electrical charge 
impacts, Brownian diffusion, particle drag, and 
gravity [32]. PM sources include farming produce 
burning, transportation, construction, trash burning, 
coal mining, and incomplete fuel combustion, with 
transportation emissions being a significant 
contributor [33]. 
Urbanization and industrialization have led to a surge 
in vehicle numbers, contributing to high PM levels in 
urban environments [34]. PM adversely affects air 
quality, visibility, climate, and radiation forces [35]. 
HM associated with PM in road dust and ambient air 
poses significant health risks, with finer particles 
accumulating more HM due to their larger surface 
area [36]. 
 
Although HM constitutes only a small percentage of 
PM,[37] they can cause severe health impacts through 
inhalation, ingestion, and skin absorption [38]. HM 
has a propensity for bioaccumulation across the food 
chain, leading to cancer, immunological toxicity, 
neurotoxicity, and cardiotoxicity [39,40]. Given the 
harmful effects of HM in urban environments, 
analyzing HM concentrations in environmental PM 
and road dust is crucial for addressing related health 
concerns [41]. Similar studies have been conducted in 
India, China, and other countries [42]. 
 
2.1 Size distribution of PM and environmental 
concentrations of pollutants 
PM10 concentration in Indian cities varies from 100 
– 400 µg /m3 [44]. According to EPA in Lahore 
Pakistan the mean level of TSP is 606-678µg/m³ [45]. 
The average annual TSP concentration in major cities 
in China is between 300 and 500 µg/m³. TSP and 
PM10 concentration in Southeast Asia are high with 
annual mean concentrations between 100 and 400 
µg/m³ and 100 and 300 µg/m³ respectively. On the 
other hand, yearly mean TSP concentrations in the 
region of Western Pacific, North America, and 
Western Europe (excluding China) are significantly 
lower and range from 20 to 80 µg/m³ while PM10 
amounts are from 10 to 55 µg/m³ [46]. The 
concentrations of HM in PM vary between 30-35 
µg/m³ [47]. Potential soil contaminants include Sr, 
Se, As, Ba, V, Ca, K, Ni, Fe, Cr, Cd, Zn, Cu, and Mn. 
 
2.2 Impacts of PM 
Long-range transport of pollutants affects both the 
environment and human health, leading to issues like 
acid rain, climate change, and ozone formation. HMs 
such as Zn, Cd, Pb, along with base cations like Mg 
(2+), Ca (2+), K (+), Na (+), NH (4) +, NO (3-), SO4 
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(2-), are deposited via wet and dry processes into 

ecosystems. While NH₄⁺, NO₃⁻, and SO₄²⁻ 
contribute to eutrophication and acidification, base 
cations help alleviate acidification and enhance 
nutrient cycling in soil. Despite their importance, 
HMs are toxic [48]. 
 
PM10 has been associated with respiratory health 
problems and coronary artery disease [49]. PM2. 5 is 
more dangerous and can even reach the inner part of 
the lungs [50]. Increased concentrations of coarse 
particles (PM2. 5-10) have also been shown to 
contribute to death [51]. Allergens are also present in 
some of the constituents in the road particles that are 
re-suspended [52]. The results indicate that small 
particles have a greater effect than large particles per 
unit mass [53]. Research in Finland and Germany 
highlights greater health impacts of fine and ultrafine 
particles on asthmatics [54]. Particle effects vary 
based on chemical composition. 
 
2.3 PM pollution prevention and air quality 
oversight 
2.3.1 Models of meteorology and air pollution 
dispersion 
The Weather Research and Forecasting (WRF) 
modeling system, Regional Atmospheric Modeling 
System (RAMS), and MM5 modeling system are 
commonly used for weather forecasting [55]. 
MM5 is a non-hydrostatic, limited-area model 
designed to simulate mesoscale atmospheric 
circulation, while RAMS is a flexible numerical 
system developed by Colorado State University for 
predicting meteorological events [56]. 
 
2.3.2 Methodology of remote sensing 
Remote sensing is another approach with a wide 
range of applications regarding ecological 
contamination. It entails gathering data on the 
earth's surface without obtaining a physical sample 
or contacting it by employing sensors mounted on 
a platform at some distance from them [57]. A 
sensor detects the energy the earth reflects, and the 
data obtained can be presented as a computer image 
or a photograph. It was founded on the notion that 
the atmosphere impacts satellite photographs of the 
earth's surface in the solar spectrum, and the signal 

received by the satellite sensor was the sum of these 
impacts [58]. 
 
2.3.3 Application of global positioning systems 
(GPS) and Geographic information systems 
(GIS) 
GIS and GPS are essential for air quality 
monitoring. GIS gathers, analyzes, and 
disseminates geographic data, aiding in assessing 
quality of life. GPS receivers help fill spatial 
coordinate gaps in inventory data, determining 
emission points' precise positions [59]. GIS 
evaluates quality of life, informing local individuals 
and organizations, optimizing resource distribution 
for community growth [60]. GPS receivers are 
another beneficial instrument that state and local 
government organizations can utilize to remedy 
spatial coordinate gaps in point source inventory 
data [61]. It comprises satellite, control, and 
receiver parts, and the GPS receivers can be utilized 
to determine the precise position of emission-
releasing points if access to the site is provided. 
 
2.3.4 Air Quality Monitoring Measures 
Environmental authorities employ various regulatory 
methods to incentivize industrial facilities to reduce 
pollutants, including control and command 
strategies, pollution taxes, tradable permits, voluntary 
engagement programs, ecological performance 
ratings, and public disclosure programs. 
 
2.3.5 Implementation of the source 
apportionment technique 
Identifying the sources of suspended particles is 
critical for efficient air quality management. 
Receptor-oriented modeling is a widely used method 
for identifying the sources of suspended particles in 
the air [62]. 
The process includes developing a conceptual model, 
identifying possible sources, acquiring and examining 
particulate matter samples, and ensuring source 
classes with receptor models. It also quantifies source 
contributions, calculates profile modifications and 
precursor gases for secondary aerosols, and 
reconciles outcomes with source models and 
receptor information. 
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Effects of PM on human body 
 

 
Figure 2 The effects of PM in human body. 

 
Outdoor air pollution, including ozone and 
particulate matter (PM0, PM2, PM10), poses health 
risks, leading to respiratory diseases. Living in highly 
polluted areas increases hospitalization due to flu or 

respiratory syncytial virus (RSV). Recurrent exposure 
causes inflammation in immune cells, reducing 
functionality, and increasing susceptibility to 
respiratory infections. 

 

 
Figure 3 The impact air pollutant (PM) on Respiratory syncytial virus (RSV). 

 
PM, categorized by size, can be deposited in the 
respiratory system, increasing vulnerability to COPD. 
Air pollutants like indoor pollution and PM10 affect 
respiratory tissues, influencing immune responses 

and promoting RSV infection. PM2.5, PM10, indoor 
pollution, and ozone adversely affect immune 
responses and cytokine production, promoting 
influenza infection. 
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Figure 4 The impact air pollutant (PM) on influenza virus. 

 
3. Effects of HM on human body 
Chromium (VI) is a highly toxic compound, difficult 
to metabolize, and more toxic than chromium (III) 
[63, 64]. It enters cells through the membrane, leading 
to ROS generation and cellular damage [65, 66]. 
Associated with cancers and organ toxicity, 
particularly affecting kidneys, and liver [70, 71], it 
induces chromosomal abnormalities, DNA damage, 
and lung carcinogenesis [72]. 
Cadmium (II) causes acute and chronic damage to 
pulmonary and olfactory functions through 
inhalation or ingestion [73, 74]. Symptoms of 
ingested Cd (II) include abdominal pain, diminished 

consciousness, nausea, vomiting, and hepatic 
damage [75]. It's linked to lung adenocarcinomas, 
DNA strand breakage, and disruption of protein 
and nucleic acid synthesis [76]. 
Lead (II) emitted by natural and anthropogenic 
processes affects children through dust and chips in 
packaged food, impacting organs like the liver, 
kidneys, heart, and brain [77, 78]. It significantly 
impacts the neurological system, causing symptoms 
like memory loss, irritability, headaches, and poor 
attention. Table 1 shows the HM’s source and impacts 
on health. 

 
Table 1 The HM’s source and Health impacts 

HM Source Health impacts References 

Sb Electronic device, smelting and mining
 activities, Abrasion  of 
vehicle brake linings 

loss of sleep, abdominal pain, nausea and vomiting, 
dizziness, headache, 

[79] 

Ba Internal combustion engines tremors, paralysis and even death, muscle weakness, 
irregular heartbeat, diarrhea, vomiting, nausea, 

[80] 

Ag Sewage sludge, biocide, Photographic 
processing effluents 

Coma or death, unconsciousness, confusion, staggering, 
drowsiness, respiratory irritation, headaches, breathing 
difficulty, dizziness 

[81] 

Fe Automobile Retinitis, choroiditis, conjunctivitis [82] 

Mn Gasoline combustion, electroplating industries, 
auto workshops, automobile part corrosion, and 
Industrial dumping areas 

Inhalation or contact causes damage to central nervous 
system 

[83] 

Co motor vehicle tire wheel, Traffic emissions Cause cancer, rhinitis and asthma, allergic dermatitis, toxic 
to the heart muscle. 

[84] 

Cr Automobile part corrosion, industry dumping 
areas, power plant 

Respiration problem, Rapid hair loss [85] 

V Power plant May cause liver or kidney damage, nausea, vomiting, 
abdominal pain and greenish discoloration of the tongue. 

[86] 

Sn waste combustion, nonferrous metallurgy of 
Cu–Ni, coal burning, Combustion of liquid fuels 

Stomachache, anemia, and liver and kidney problems. 
neurotoxicity, interstitial pneumonia, 
Mutagenicity/genotoxici ty: 

[87] 

As Power plant, Copper metallurgy Dermatitis (Skin irritation), Bronchitis [88] 
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Bi Nonferrous metallurgy of copper hepatotoxicity, nephrotoxicity, gastrointestinal 
toxicity, neurotoxicity, 

[89] 

Ni automobile part corrosion, industry 
dumping areas, power plant, fossil fuel 
combustion, brake linings, Abrasion of tire 
treads 

Rapid hair fall, Throat and Stomach cancers, 
Lungs, Hepatotoxic, Genotoxic, Neurotoxic, 
mmunotoxic, 

[90] 

Cd brake linings, Abrasion of tire treads Cancer in bone marrow, Gastrointestinal 
disorder, Bronchitis, Kidney damage, 

[91] 

Zn lubricating motor oil, and tires, fossil fuel 
combustion, tire and brake wear, Traffic 
exhaust, 

cause damage to nervous membrane, Zinc fumes 
have corrosive effect on skin 

[92] 

Cu tire and brake wear, Traffic 
exhaust 

Intestinal irritation, Severe anaemia, Failure of 
kidney and Brain 

[93] 

Pb Pigments, pesticides, fertilizers, mining and 
Pb ore smelting, brake linings, abrasion of 
tire treads, automobile emissions, Gasoline. 

Mental retardation in children, Gastrointestinal 
damage, kidney, Liver 

[94] 

Hg industrial uses, and mining, waste 
incineration, coal combustion, 

Damage to nervous system [95] 

 
4. Allowable HM levels in ambient air-WHO air quality guidelines  
Table 2. World Health Organization (WHO) air quality guidelines. 

 
Table 2 shows the World Health Organization (WHO) air quality guidelines [96]. 

HM Summer µ𝑔𝑚−3 Winter µ𝑔𝑚−3 Limit Value µ𝑔𝑚−3 

Pb 0.5 0.5 0.5 

Ni 0.061 0.067 0.00024 

Fe 3.4 4.3 10000 

Cu 0.2 0.2 100 

Cr 0.309 0.354 0.012 

Cd 0.022 0.026 0.0002 

As 0.07 0.035 0.0006 

 

 
Figure 8 National Ambient Air Quality Standards (NAAQS) Revised in Relation to WHO Standards 
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Figure 6 The Ambient Air quality in selected cities for an example Manipur, Meghalaya, states of India 

(2019) [97]. 
 

 
Figure 7 shows the Ambient Air quality in selected city for an example Mizoram state of India (2019) 

[97]. 
 
The CPCB regulates ambient air quality standards 
through the NAAQS, first issued in 1982 and 
updated in 1994, 1998, and 2009, significantly 
reducing contaminants across the country. 
NAAQS standards cover pollutants like Nickel, 
Arsenic, Benzopyrene, Benzene, Lead (Pb), 
Ammonia, Ozone (O3), Carbon Monoxide (CO), 
Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), 
PM10, and PM2.5, monitored by the NAMP. 
The National AQI, introduced in 2014, categorizes 
air quality into six levels, aiding public understanding. 
It focuses on eight pollutants, unlike NAAQS's 
twelve, calculating the highest concentration to 
reflect air quality directly. 
 
5. HM biosorption by various microbial 
biosorbents 
Unprocessed waste, water, or sludge from industrial 
or human activities release these toxins, posing risks 
like allergies, infections, and diseases to living 
beings. To combat this pollution, eco-friendly 
methods like biosorption using microbial biomass 
are crucial. Unlike traditional methods that generate 
chemical waste, biosorption is safer, cost-effective, 
and utilizes microbial metal sequestration systems 
for HM removal. 
 
6. Conclusion 
Several efficient and readily available biosorbents 
effectively remove HM pollutants at minimal cost. 
However, further research is necessary to identify the 
most suitable biosorbent for different applications, 

such as industrial wastewater treatment and soil 
remediation. Sustainable strategies are needed to 
optimize biosorbent selection, operational 
conditions, and HM removal techniques. 
Additionally, more research on biosorbent 
characteristics, like particle size and surface 
properties, is essential to improve biosorption 
studies. Furthermore, exploring the potential of 
microbial biomass for metal adsorption, particularly 
in wastewater and air industries, remains crucial. 
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